立即注册 登录
气象家园 返回首页

wlzhongouc的个人空间 http://bbs.06climate.com/?335 [收藏] [复制] [分享] [RSS]

日志

Ekman spiral

已有 390 次阅读2012-5-16 23:03 | one, horizontal, direction, structure, noticed

(From http://en.wikipedia.org/wiki/Ekman_spiral#cite_note-0

     The Ekman spiral refers to a structure of currents or winds near a horizontal boundary in which the flow direction rotates as one moves away from the boundary. It derives its name from the Swedish oceanographer Vagn Walfrid Ekman. The deflection of surface currents was first noticed by the Norwegian oceanographer Fridtjof Nansen during the Fram expedition (1893–1896).

      The effect is a consequence of the Coriolis effect which subjects moving objects to a force to the right of their direction of motion in the northern hemisphere (and to the left in the Southern Hemisphere). Thus, when a persistent wind blows over an extended area of the ocean surface in the northern hemisphere, it causes a surface current which accelerates in that direction, which then experiences a Coriolis force and acceleration to the right of the wind: the current will turn gradually to the right as it gains speed. As the flow is now somewhat right of the wind, the Coriolis force perpendicular to the flow's motion is now partly directed against the wind. Eventually, the current will reach a top speed when the force of the wind, of the Coriolis effect, and the resistant drag of the subsurface water balance, and the current will flow at a constant speed and direction as long as the wind persists. This surface current drags on the water layer below it, applying a force in its own direction of motion to that layer, repeating the process whereby that layer eventually becomes a steady current even further to the right of the wind, and so on for deeper layers of water, resulting in a continuous rotation (or spiraling) of current direction with changing depth. As depth increases, the force transmitted from the driving wind declines and thus the speed of the resultant steady current decreases, hence the tapered spiral representation in the accompanying diagram. The depth to which the Ekman spiral penetrates is determined by how far turbulent mixing can penetrate over the course of a pendulum day.

画好了,哈哈,大爱Ekman漂流理论,大爱Fridtjof Nansen

评论 (0 个评论)

facelist doodle 涂鸦板

您需要登录后才可以评论 登录 | 立即注册

Copyright ©2011-2014 bbs.06climate.com All Rights Reserved.  Powered by Discuz! (京ICP-10201084)

本站信息均由会员发表,不代表气象家园立场,禁止在本站发表与国家法律相抵触言论

返回顶部