- 积分
 - 515
 
	- 贡献
 -  
 
	- 精华
 
	- 在线时间
 -  小时
 
	- 注册时间
 - 2013-10-23
 
	- 最后登录
 - 1970-1-1
 
 
 
 
 
 
 | 
	
 
登录后查看更多精彩内容~
您需要 登录 才可以下载或查看,没有帐号?立即注册 
 
 
 
x
 
 本帖最后由 陌上花开123456 于 2014-5-26 16:14 编辑  
 
我输出多元回归系数以便后面计算,但是运行不出结果,把格点总数XY(220*120)改小一点可以运行,程序的结果如图片所示,以下为我的程序代码,红色标记为问题所在,蓝色部分为子程序,请问该怎么解决?      
 
 
     program main 
      parameter (N=324) 
      parameter (k=3) 
c ******* K predictor variables 
      parameter (MM=4) 
        integer,parameter::xy=220*120 
c******** Note that  MM=K+1  ***************** 
      dimension y(N),x(k,N),a(MM),b(mm,mm),v(k) 
c     double precision        x,y,a,b,v,q,s,r,u 
      dimension ob(n,xy),x1(n,xy),x2(n,xy),x3(n,xy) 
 
      open(11,file='H:\2013\DATA\duoyuan\CSFR-pr.dat',form='binary') 
        read(11)((ob(it,ii),it=1,n),ii=1,xy) 
 
      open(22,file='H:\2013\DATA\duoyuan\bcc-csm1-1-m-pr.dat', 
     &form='binary') 
        read(22)((x1(it,ii),it=1,n),ii=1,xy) 
 
        open(33,file='H:\2013\DATA\duoyuan\CNRM-CM5-pr.dat',form='binary') 
        read(33)((x2(it,ii),it=1,n),ii=1,xy) 
 
        open(44,file='H:\2013\DATA\duoyuan\CCSM4-pr.dat',form='binary') 
        read(44)((x3(it,ii),it=1,n),ii=1,xy) 
      print*,'ok1' 
 
        do ii=1,26400 
        do it=1,n 
      y(it)=0.0 
        x(1,it)=0.0 
      x(2,it)=0.0 
        x(3,it)=0.0 
        enddo 
        do it=1,n 
        y(it)=ob(it,ii) 
        x(1,it)=x1(it,ii) 
      x(2,it)=x2(it,ii) 
        x(3,it)=x3(it,ii) 
        enddo 
 
      open(1,file='H:\2013\DATA\duoyuan\a\a0.txt',form='formatted') 
        open(3,file='H:\2013\DATA\duoyuan\a\a.txt',form='formatted') 
          call isqt2(x,y,k,mm,n,a,q,s,r,v,u,b,dyy) 
c          write(*,88) a(1) 
        write(1,88) a(1) 
88        format(/1x,'b 0=',f9.5) 
           do 89 j=2,mm 
c            write(*,100) j-1,a(j) 
89      write(3,100) j-1,a(j) 
100           format(1x,'b',i2,'=',f9.5) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c           write(*,20)q,s,r 
 20           format(1x,'q=',f13.6,3x,'s=',f13.6,3x,'r=',f13.6) 
c           write(*,22)q,u,dyy 
 22           format(1x,'q=',f13.6,3x,'u=',f13.6,3x,'dyy=',f13.6) 
c           write(*,30)(i,v(i),i=1,k) 
30          format(1x,'v(',i2,')=',f13.6) 
c           write(*,40)u 
 40           format(1x,'u=',f13.6) 
            open(6,file='H:\2013\DATA\duoyuan\a\b.txt') 
          write(6,180) 
 180          format(/2x,'regression coefficients:') 
          write(6,88) a(1) 
           do 189 j=2,mm 
189             write(6,100) j-1,a(j) 
          write(6,200) 
200        format(/1x,'Generic Analysis of Variance Table for the Multiple 
     * Linear Regression') 
          write(6,202) 
202         format(/1x,'----------------------------------------------------- 
     *---------------') 
          write(6,204) 
204        format(/3x,'Source       df       SS           MS') 
          write(6,202) 
          write(6,206)        n-1,dyy 
206        format(/1x,'Total       n-1=',i2,'  SST=',f8.4) 
          u2=u/real(K) 
          write(6,208)        k,u,u2 
208   format(/1x,'Regression    K=',i2,'  SSR=',f8.4,'   MSR=SSR/K=' 
     *,f8.4) 
           q2=q/real(n-k-1) 
          write(6,209)        n-k-1,q,q2 
209   format(/1x,'Residual  n-k-1=',i2,'  SSE=',f8.4,'   MSE=SSE/(n-k-1) 
     *=',f8.4) 
            f=(u/real(k))/(q/real(n-k-1)) 
            write(6,220) f 
220        format(/1x,'                   F=MSR/MSE=',f9.4) 
          write(6,202) 
          close(6) 
        end do 
         stop 
          end 
cccc这是多元线性回归中计算各个参数的子程序,为以上主程序中的调用 
          subroutine isqt2(x,y,m,mm,n,a,q,s,r,v,u,b,dyy) 
           dimension x(m,n),y(n),a(mm),b(mm,mm),v(m) 
c          real        x,y,a,b,v,q,s,r,u,yy,dyy,p,pp 
c          double precision  x,y,a,b,v,q,s,r,u,yy,dyy,p,pp 
          b(1,1)=n 
          do 20 j=2,mm 
            b(1,j)=0.0 
            do 10 i=1,n 
10            b(1,j)=b(1,j)+x(j-1,i) 
            b(j,1)=b(1,j) 
20            continue 
          do 50 i=2,mm 
           do 40 j=i,mm 
             b(i,j)=0.0 
             do 30 k=1,n 
30             b(i,j)=b(i,j)+x(i-1,k)*x(j-1,k) 
             b(j,i)=b(i,j) 
40           continue 
50             continue 
            a(1)=0.0 
           do 60 i=1,n 
60            a(1)=a(1)+y(i) 
           do 80 i=2,mm 
            a(i)=0.0 
            do 70 j=1,n 
70            a(I)=a(i)+x(i-1,j)*y(j) 
80          continue 
          call achol(b,mm,1,a,l) 
          yy=0.0 
          do 90 i=1,n 
90          yy=yy+y(i)/n 
           q=0.0 
           dyy=0.0 
           u=0.0 
cccccccccccccccccccccccccccccccccc 
           do 110 i=1,n 
           p=a(1) 
           do 100 j=1,m 
100           p=p+a(j+1)*x(j,i) 
           q=q+(y(i)-p)*(y(i)-p) 
           dyy=dyy+(y(i)-yy)*(y(i)-yy) 
           u=u+(yy-p)*(yy-p) 
 
110           continue 
 
cccccccccccccccccccccccccccccccccc 
           s=sqrt(q/n) 
           r=sqrt(1.0-q/dyy) 
           do 150 j=1,m 
           p=0.0 
           do 140 i=1,n 
           pp=a(1) 
           do 130 k=1,m 
           if(k.ne.j)pp=pp+a(k+1)*x(k,i) 
130           continue 
           p=p+(y(i)-pp)*(y(i)-pp) 
140           continue 
           v(j)=sqrt(1.0-q/p) 
150           continue 
           return 
           end 
 
         subroutine achol(a,n,m,d,l) 
         dimension a(n,n),d(n,m) 
c           real a,d 
c          double precision a,d 
         l=1 
         if(a(1,1)+1.0.eq.1.0)then 
            l=0 
            write(*,30) 
            return 
          endif 
            a(1,1)=sqrt(a(1,1)) 
          do 10 j=2,n 
10              a(1,j)=a(1,j)/a(1,1) 
          do 100 i=2,n 
            do 20 j=2,i 
20             a(i,i)=a(i,i)-a(j-1,i)*a(j-1,i) 
             if(a(i,i)+1.0.eq.1.0)then 
             l=0 
             write(*,30) 
             return 
             endif 
30           format(1x,'fail') 
           a(i,i)=sqrt(a(i,i)) 
           if(i.ne.n)then 
           do 50 j=I+1,n 
           do 40 k=2,i 
40           a(i,j)=a(i,j)-a(k-1,i)*a(k-1,j) 
50           a(i,j)=a(i,j)/a(I,i) 
           endif 
100           continue 
           do 130 j=1,m 
           d(1,j)=d(1,j)/a(1,1) 
           do 120 i=2,n 
           do 110 k=2,i 
110              d(i,j)=d(i,j)-a(k-1,i)*d(k-1,j) 
            d(i,j)=d(i,j)/a(i,i) 
120               continue 
130               continue 
            do 160 j=1,m 
            d(n,j)=d(n,j)/a(n,n) 
            do 150 k=n,2,-1 
            do 140 i=k,n 
140               d(k-1,j)=d(k-1,j)-a(k-1,i)*d(i,j) 
             d(k-1,j)=d(k-1,j)/a(k-1,k-1) 
150                continue 
160                continue 
            return 
             end 
32 
 
 |   
- 
 
 
 
 
 
 
 
 |