登录后查看更多精彩内容~
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
本帖最后由 hillside 于 2016-3-17 12:55 编辑
WRF-Hydro是WRF的一个水文模块。本人对WRF的具体运行并不熟悉,只是对WRF-Hydro本身有些好奇。现对《WRF-Hydro(3.0版)技术说明与用户指南》进行微量试译。
“天目神眉”园友已在气象家园提供多个关于WR的F中文材料,如果他已拥有WRF-Hydro的中文材料,也欢迎他惠赐给大家。其他园友有WRF-Hydro中文信息的,也希望分享。这样,我也能乐观其成,不作多余的尝试了。
按WRF官网介绍,WRF-Hydro已有3.0版本,然而,凭我自己的搜索,似乎仅有2.0与1.0的技术文件与用户指南。2.0的技术文件与用户指南的链接难以下载成功。从链接信息看,似乎需要通过GOOGLE中转。目前仅能下载到WRF-Hydro1.0的技术文件与用户指南。
我对于WRF-Hydro本身的具体内容,目前也是一无所知,只是抱着“无知者无畏”的微量勇气做些大无谓(注:不是别字)的尝试。
WRF尽管美仑美奂,但勾起我了解与翻译兴趣的只是Hydro以及WRF对于Hydro的青睐。
下面进行一些《WRF-Hydro(1.0版)技术说明与用户指南》的微量试译:
(增补说明:承园友又是那隻貓襄助,提供了《WRF-Hydro(3.0版)技术说明与用户指南(英文)》 ,下面以此版本为准):
《WRF-Hydro(3.0版)技术说明与用户指南》前言与目录
(注:因时间关系,主要还是1.0的目录内容,但除最后几条外,变化不大)
本用户指南介绍了WRF-WRF-Hydro模型,该模型耦合了结构性选项与物理选项,1.0版于2013年4月发布,此3.0版为2015年5月更新。因为WRF-WRF-Hydro模型仍在开发之中,本文件将不断进行更新,如有需要,可联络wrfhelp@ucar.edu。
本文件系主文件《WRF模型用户指南与技术文件》((http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf)的补充,它更详细地描述了涉及WRF的方程、数值、边界条件和嵌套情况等。在实用程度上,本文件平行于WRF模型主文件《WRF模型用户指南与技术文件》。
关于WRF-Hydro的最新版本消息,可访问WRF-Hydro用户网页。本文件制作者为David Gochis, Wei Yu, David Yates(注:Wei Yu应当是中国人,weiyu@ucar.edu)。
目录
1. 概述
1.1 简史
1.2 模型要求
1.3 计算/硬件要求
2. 模型技术说明和软件安装:
2.1 编码结构和编程规则
2.2 目录结构
2.3 WRF-Hydro模块描述
2.4 未耦合WRF-Hydro程序的安装与运行
2.5 耦合WRF-Hydro程序的安装与运行
2.6 WRF-Hydro模型变量列表说明
3. 模型物理选项
3.1 概述
3.2 Noah 诺亚陆面模型描述
3.3 次网格解聚与聚合
3.4 地下汇流
3.5 地表汇流
3.6 河道汇流描述
3.7 湖泊、水库汇流描述
3.8 概念性基流模型描述
4. WRF-Hydro预处理、初始化和输出文件说明:
4.1 概述
4.2 范围处理和地表地形输入文件说明
4.3 气象强迫数据输入文件说明
4.4 WRF-Hydro模型输出文件说明
5. 使用案例:
5.1 概述
5.2 带有理想强迫的、未耦合的简单、单个流域基准(典型案例)
5.3 未耦合的现实世界骤发性洪水(山区暴洪)事件
5.4 完全耦合的真实世界(水文气象)事件
6. WRF-Hydro实用程序脚本
附1:https://www.rap.ucar.edu/projects/wrf_hydro
Welcome to the users page for the WRF-Hydro modeling system. The WRF-Hydro modeling system has been developed by the National Center for Atmospheric Research and its research partners through the generous support of the U.S. National Science Foundation and through research projects supported by the U.S. National Aeronautics and Space Adminsitration (NASA) and the U.S. National Oceanic and Atmospheric Administration (NOAA). The WRF-Hydro system was originally designed as a model coupling framework designed to facilitate easier coupling between the Weather Research and Forecasting model and components of terrestrial hydrological models. WRF-Hydro is both a stand-alone hydrological modeling architecture as well as a coupling architecture for coupling of hydrological models with atmospheric models. WRF-Hydro is fully-parallelized to enable its usage on clusters and high performance computing systems alike. Like the WRF model it does not attempt to prescribe a particular or singular suite of physics but, instead, is designed to be extensible to new hydrological parameterizations. Although it was originally designed to be used within the WRF model, it has evolved over time to possess many additional attributes as follows:...
- Multi-scale functionality to permit modeling of atmospheric, land surface and hydrological processes on different spatial grids
- Modularized component model coupling interfaces for many typical terrestrial hydrological processes such as surface runoff, channel flow, lake/reservoir flow, sub-surface flow, land-atmosphere exchanges
- Parallel code development for application on commodity cluster and higher performance computing systems
- Stand-alone capabilities for hydrological prediction and research uncoupled to atmospheric models
- Efficient coupling architecture so that it can be embedded within (or coupled to) other types of Earth system models such as the NCAR Community Earth System Model (CESM) or the NASA Land Information System (LIS)
- Utilization of many standard data formats for efficient job construction and evaluation
THE NCAR 'WRF-HYDRO' SYSTEM The Weather Research and Forecasting Model Hydrological modeling extension package (WRF-Hydro) is a new community-based model coupling framework designed to link multi-scale process models of the atmosphere and terrestrial hydrology. The underlying goal of WRF-Hydro development is to improve prediction skill of hydrometeorological forecasts using science-based numerical prediction tools. To support this goal, hydrometeorological scientists at NCAR, in collaboration with university researchers and federal agencies, have built an extensible, multi-scale coupling architecture to link weather and climate models with hydrological component models (figure below). The system provides the capability to perform coupled and uncoupled multi-physics simulations and predictions of terrestrial water cycle processes on a wide range of spatial and temporal scales.
Designed to operate on the National Science Foundation’s (NSF) high performance computing platforms, the WRF-Hydro system leverages many existing and emerging standards in data formats, pre-/post-processing workflows and parallel computing libraries. The architecture is intended to significantly simplify the often laborious task of integrating, or coupling, existing and emerging hydrological models into the WRF modeling framework. In doing so, an extensible, portable and scalable environment for hypothesis testing, sensitivity analysis, data assimilation and environmental prediction has emerged. The WRF-Hydro system is also adopting a ‘community-based’ development processes with an open and participatory working group environment. NCAR in collaboration with other NSF and university entities are developing a support structure for WRF-Hydro in the way of model documentation, public, online code repositories, a library of user cases and many pre- and post-processing utilities. The WRF-Hydro system has been applied for a wide range of research and operational prediction problems both in the U.S. and abroad. Specific past projects include flash flood prediction, regional hydroclimate impacts assessment, seasonal forecasting of water resources and land-atmosphere coupling studies. 附2:http://www.sz.gov.cn/cn/xxgk/bmdt/201504/t20150424_2862864.htm
深圳市气象局邀请NCAR专家进行“快速更新高分辨数值预报系统”培训
深圳市气象局信息 2015-04-24
4月22-23日,深圳市气象台和深圳南方强天气研究重点实验室主办了“快速更新高分辨精细化数值预报系统”培训,为提高精细化网格业务预报的技术能力及其在积涝预报业务系统中的支撑作用。
快速更新高分辨精细化数值预报系统是基于WRF模式研发的实时四维资料同化(RTFDDA)和预报技术,可建立深港地区高分辨率、快速更新的精细化实时天气分析和短临预报系统。该系统将高效同化深圳市气象局高密度、高分辨气象观测网以及各类常规和加密气象观测资料,产生逐小时更新、分辨率为1公里的精细化网格预报产品,覆盖深圳、香港及其附近地区,同时采用NCAR先进的类比卡曼滤波(ANKF)统计误差订正技术,对逐小时更新预报、每15分钟间隔的地面观测站点时间序列和逐个小时间隔的地面二维网格点上的温、湿、风场气象要素进行误差订正。
该技术的应用可有效提升对深圳地区温、湿、风场等气象要素的精细化网格业务预报的技术能力。另外,与WRF-Hydro系统耦合,可计算实时的深圳区域网格化的河道水位变化状况,开创性的形成自动化的积涝预报。快速更新高分辨精细化数值预报系统的应用前景广阔,不仅是对预报业务的直接技术支撑,同时在面向政府、公众的精细化定时定点预报上也可结合需求,开发出更加丰富的多样化服务产品。
附3:http://bbs.06climate.com/forum.php?mod=viewthread&tid=4274&extra=page%3D4
WRF-NMM模式技术手册中文版
天目神眉
注册时间2011-6-20 发表于 2011-11-6 18:24:43
附4:http://bbs.06climate.com/forum.php?mod=viewthread&tid=40500
WRF_HYDRO intel 编译器编译问题
附5:http://www.wrf-model.org/users/release.php
WRF当前的最新版本是WRF V3.7.1
The latest WRF release is Version 3.7.1 (August 2015). Details on this may be found at: WRF V3.7.1.
The next major WRF release will be WRF Version 3.8 in April 2016. The timeline for it is given below. A sampling of potential features is listed, but ultimate inclusion of any candidate is not guaranteed in advance and is dependent on timely preparation and acceptance of the related code.
- Software: PIO build updates, Vertical nesting improvements, Parallel nest decomposition for HWRF
- Physics: K-F CuP scheme, Theta-m mods, HRRR physics updates, Aerosol (Thompson)-radiation interactions
- WRFDA: AMSR-2 obs, Dynamic constraint for hybrid DA
- WRF-Chem: Dust scheme improvements
- WRF-Hydro: Updated code
- HWRF: 2015 Operational changes, Ferrier-Aligo microphysics
- WPS: GMTED topo dataset
Developers seeking to propose code for new or improved capabilities for the WRF system must review Information for Code Contributors. Prospective contributors may write to wrfhelp@ucar.edu for information and for contacting the Developers' Committee (which oversees WRF contributions and manages the repository) or the Release Committee (which oversees major releases). Both the Developers' Committee and the Release Committee are described inWRF Code Repository and Release Administration.
Jordan Powers, NCAR/MMM— Chairman
Michael Barlage, NCAR/RAL
Mrinal Biswas, DTC
Tom Black, NOAA/NCEP
Laurie Carson, DTC
Jimy Dudhia, NCAR/MMM
Dave Gill, NCAR/MMM
Georg Grell, NOAA/ESRL
Michael Kavulich, NCAR/MMM
Steven Peckham, CRREL
Wei Wang, NCAR/MMM
Wei Yu, NCAR/RAL
|