- 积分
- 1478
- 贡献
-
- 精华
- 在线时间
- 小时
- 注册时间
- 2015-4-9
- 最后登录
- 1970-1-1
|
发表于 2022-4-5 06:53:56
|
显示全部楼层
本帖最后由 zhaokg 于 2022-6-11 06:37 编辑
如果有人需要一个贝叶斯算法的话,我开发了一个时间序列趋势,断点/突变分析,和时间序列分解算法BEAST. 这里有更多介绍 http://github.com/zhaokg/Rbeast.
具体而言, beast可以在R和Matlab中调用:
in R
- install.packages("Rbeast")
- data(Nile) # annual streamflow of the Nile River
- out = beast(Nile, season='none') # 'none': trend-only data without seasonlaity
- print(out)
- plot(out)
复制代码
in Matlab:
- eval(webread('http://b.link/beast',weboptions('cert',''))) % install BEAST to your local machine
- load('Nile.mat') % annual streamflow of the Nile River startin from year 1871
- out = beast(Nile, 'season', 'none','start', 1871) % trend-only data without seasonality
- printbeast(out)
- plotbeast(out)
复制代码
Matlab中另外一个例子
- load('googletrend.mat') % Monthly Google search trend data of 'beach' since Jan 2004
- o = beast( beach ) % Apply BEAST to the 'beach time series: beach is a data vector only; the time
- % info can be supplied using the start and deltat
- % keywords, as in the next commented line
- %o = beast( beach,'start',[2004,1],'deltat',1/12 )
- printbeast(o) % print the changepoints detected
- plotbeast(o) % plot the results: o.season.Y and o.trend.Y are the seasonal and trend compoents
复制代码
|
|