- »ý·Ö
- 26283
- ¹±Ï×
-
- ¾«»ª
- ÔÚÏßʱ¼ä
- Сʱ
- ×¢²áʱ¼ä
- 2012-6-1
- ×îºóµÇ¼
- 1970-1-1
|
µÇ¼ºó²é¿´¸ü¶à¾«²ÊÄÚÈÝ~
ÄúÐèÒª µÇ¼ ²Å¿ÉÒÔÏÂÔØ»ò²é¿´£¬Ã»ÓÐÕʺţ¿Á¢¼´×¢²á
x
function [H,F,AE]=AnOfVar1(X,alpha)
% µ¥ÒòËØ·½²î·ÖÎö(One-way analysis of variance)£¬¼ìÑéij¸öÒòËضÔʵÑé½á¹ûÊÇ·ñÓÐÏÔÖøÓ°Ï죬±¾º¯ÊýÄܹ»Í¬Ê±Ö´ÐÐƽºâ/·Çƽºâµ¥ÒòËØ·½²î·ÖÎö
% ·½²î·ÖÎöÖУ¬Ã¿¸öˮƽ×÷µÄʵÑé´ÎÊý¿ÉÒÔ²»Ò»Ñù£¬´Ëʱ³ÆΪ·Çƽºâ·½²î·ÖÎö£¬·ñÔò³ÆΪƽºâ·½²î·ÖÎö
% ÖÁÓÚ¶àÒòËØ·½²î·ÖÎöÏà¶Ô¸´ÔÓ£¬ÇëÖ±½ÓʹÓÃMATLAB×Ô´øµÄanovan()º¯Êý
%
% ²ÎÊý˵Ã÷
% X£ºÊµÑéÊý¾Ý£¬Áдú±íÒ»¸öÒòËØˮƽ£¬Ðдú±íÒ»´ÎʵÑ飬ʵÑé´ÎÊý²»¹»µÄ²¹NaN
% alpha¡Ê[0 1]£ºÖÃÐŶÈ
% H£º¼ÙÉè¼ìÑé½á¹û£¬H=0£¬½ÓÊÜÔ¾ùÖµÏàµÈµÄ¼ÙÉ裬²»Í¬µÄʵÑéˮƽ¶ÔʵÑé½á¹ûûÓÐÓ°Ï죬H=1£¬ÓÐÏÔÖøÓ°Ïì
% F=[Fv,F_alpha]£º¼ÙÉè¼ìÑéµÄF·Ö²¼Öµ£¬Fv>F_alphaʱ£¬H=1
% AE£º4¡Á3¾ØÕ󣬷½²î·ÖÎöÖеÄһЩ²ÎÊý
% AE=[P Q R;Qa,Da,Qa_ba;Qe De Qe_ba;Qt Dt Qt_ba]£¬¾ßÌåÒâÒå²Î¼û´úÂë×¢ÊÍ
% P,Q,R£º¼ÆËãÀë²îƽ·½ºÍʱʹÓõ½µÄÈý¸öÖмä±äÁ¿
% Qa,Da,Qa_ba£º×é¼äÀë²î(ƽ·½ºÍ/×ÔÓɶÈ/ƽ¾ùƽ·½ºÍ)
% Qe De Qe_ba£º×éÄÚÀë²î(ƽ·½ºÍ/×ÔÓɶÈ/ƽ¾ùƽ·½ºÍ)
% Qt Dt Qt_ba£º×ÜÀë²î(ƽ·½ºÍ/×ÔÓɶÈ/ƽ¾ùƽ·½ºÍ)
%
% ʵÀý˵Ã÷
% X=[11 12.8 7.6 8.3 4.7 5.5 9.3 10.3
% 2.8 4.5 -1.5 0.2 NaN NaN NaN NaN
% 4.3 6.1 1.4 3.6 NaN NaN NaN NaN]';
% [H,F,AE]=AnOfVar1(X,0.99)
%
% ×¢ÒâÊÂÏî
% ÔÚ·½²î·ÖÎöÖУ¬¶ÔÔʼÊý¾Ýͬʱ¼Ó¼õ³Ë³ýÒ»¸ö³£Êý£¬²»»áÓ°Ïì·½²î·ÖÎö½á¹û£¬Í¬Ê±ÓÖÓÐÀûÓÚ¼ÆËã
%
% by dynamic of Matlab¼¼ÊõÂÛ̳
% see also http://www.matlabsky.com
% contact me matlabsky@gmail.com
% 2010-02-06 13:32:57
%
% ÿ¸öˮƽµÄʵÑé´ÎÊý
ni=sum(~isnan(X));
% ×ܹ²ÊµÑé´ÎÊý
n=sum(ni);
% ÿ¸öˮƽµÄʵÑéƽ¾ùÖµ
X_ba=nanmean(X(:));
% ×ÜÌå¾ùÖµ
Xi_ba=nanmean(X);
% ¼ÆËãÀë²îƽ·½ºÍµÄÈý¸öÖмä²ÎÊý
P=n*X_ba^2; % 1/n*¦²¦²Xij^2=n*X_ba^2
Q=sum(ni.*Xi_ba.^2); % ¦²(1/ni*¦²Xij^2)=¦²ni*Xi_ba^2
R=nansum(X(:).^2); % ¦²¦²Xij^2
% ×é¼äÀë²îƽ·½ºÍ ¦²¦²(Xi_ba-X_ba)^2=Q-P
Qa=Q-P;
% ×éÄÚÀë²îƽ·½ºÍ ¦²¦²(Xij-Xi_ba)^2=R-Q
Qe=R-Q;
% ×ÜÀë²îƽ·½ºÍ ¦²¦²£¨Xij-X_ba£©^2=R-P=Qa+Qt
Qt=R-P;
% Àë²îƽ·½ºÍµÄ×ÔÓɶÈ
Da=size(X,2)-1; % ×é¼äÀë²îƽ·½ºÍ×ÔÓɶÈ=ʵÑéˮƽÊý-1
De=n-Da-1; % ×ÜʵÑé´ÎÊý-ʵÑéˮƽÊý
Dt=n-1; % ×ÜʵÑé´ÎÊý-1
% ƽ¾ùÀë²îƽ·½ºÍ=Àë²îƽ·½ºÍ/×ÔÓɶÈ
Qa_ba=Qa/Da;
Qe_ba=Qe/De;
Qt_ba=Qt/Dt;
% F·Ö²¼Öµ£¬¼ÙÉè¼ìÑé
Fv=Qa_ba/Qe_ba; % ƽ¾ùÀë²î±ÈÖµ·þ´ÓF·Ö²¼£ºF=Qa_ba/Qe_ba ~ F(Da,De)
F_alpha=finv(alpha,Da,De);
H=Fv>F_alpha; % F>F_alpha£¬ÈÏΪ²»Í¬µÄʵÑéˮƽ¶ÔʵÑé½á¹ûÓÐÏÔÖøÓ°Ï죬´ËʱH=1£¬¾Ü¾øÔ¾ùÖµÏàµÈµÄ¼ÙÉè
F=[Fv,F_alpha];
AE=[P Q R;Qa,Da,Qa_ba;Qe De Qe_ba;Qt Dt Qt_ba];
% ½á¹ûÏÔʾ
disp('============================================================')
if H==1
disp('¾Ü¾øÔ¾ùÖµÏàµÈµÄ¼ÙÉ裬ʵÑéˮƽ¶ÔʵÑé½á¹ûÓÐÏÔÖøÓ°Ï죡')
else
disp('½ÓÊÜÔ¾ùÖµÏàµÈµÄ¼ÙÉ裬ʵÑéˮƽ¶ÔʵÑé½á¹ûÓ°Ïì²»Ã÷ÏÔ£¡')
end
disp(' ')
disp('Îó²îÀ´Ô´ Àë²îƽ·½ºÍ ×ÔÓÉ¶È Æ½¾ùÀë²î FÖµ F¦Á')
fprintf('%4s%13.3f%8d%15.3f%10.3f%10.3f\n','×é¼ä',Qa,Da,Qa_ba,Fv,F_alpha)
fprintf('%4s%13.3f%8d%15.3f\n','×éÄÚ',Qe,De,Qe_ba)
fprintf('%4s%13.3f%8d%15.3f\n','×ܺÍ',Qt,Dt,Qt_ba)
disp('============================================================')
Ö÷³ÌÐòÈçÏ£º
clc;
clear;
X=[11 12.8 7.6 8.3 4.7 5.5 9.3 10.3
2.8 4.5 -1.5 0.2 NaN NaN NaN NaN
4.3 6.1 1.4 3.6 NaN NaN NaN NaN]';
[H,F,AE]=AnOfVar1(X,0.99)
½á¹û£º
============================================================
¾Ü¾øÔ¾ùÖµÏàµÈµÄ¼ÙÉ裬ʵÑéˮƽ¶ÔʵÑé½á¹ûÓÐÏÔÖøÓ°Ï죡
Îó²îÀ´Ô´ Àë²îƽ·½ºÍ ×ÔÓÉ¶È Æ½¾ùÀë²î FÖµ F¦Á
×é¼ä 155.646 2 77.823 11.855 6.701
×éÄÚ 85.339 13 6.565
×ÜºÍ 240.984 15 16.066
============================================================
H =
1
F =
11.8551 6.7010
AE =
516.4256 672.0712 757.4100
155.6456 2.0000 77.8228
85.3388 13.0000 6.5645
|
|