爱气象,爱气象家园! 

气象家园

 找回密码
 立即注册

QQ登录

只需一步,快速开始

新浪微博登陆

只需一步, 快速开始

搜索
查看: 9017|回复: 14

[源代码] 合成分析(标量)

[复制链接]

新浪微博达人勋

发表于 2012-12-1 20:53:33 | 显示全部楼层 |阅读模式

登录后查看更多精彩内容~

您需要 登录 才可以下载或查看,没有帐号?立即注册 新浪微博登陆

x
求f(n)在指数x(n)为高指数年(x(n)>coefh的年)的平均值fh、低指数年(x(n)<coefh的年)的平均值fl、高指数年与气候平均的合成差dh、低指数年与气候平均的合成差dl、以及高低指数年的合成差dhl和差的显著性tn(5,3)。
c-----*----------------------------------------------------6---------7--
c     For a time series f(n), computing:
c       (1) mean in the high index years of x(n)
c       (2) mean in the low index years of x(n)
c       (3) composite difference between the mean of f(n) in high
c                     index years of x(n) and its climatology average
c       (4) composite difference between the mean of f(n) in low
c                     index years of x(n) and its climate average
c       (5) composite difference between the means of f(n) in high
c                     and low index years of x(n)
c     input: n,x(n),f(n),coefh,coefl
c       n: the length of time series
c       x: control variable (index)
c       f: given series
c       coefh: control parameter for high index (i.e., high index years are
c              those in which x(i) > coefh)
c       coefl: control parameter for low index (i.e., low index years are
c              those in which x(i) < coefl)
c     output: fh,fl,dh,dl,dhl,tn(5)
c       fh: the mean of f in high index years of x(n)
c       fl: the mean of f in low index years of x(n)
c       dh: composite difference between the mean of f in high index years of x(n)
c            and its climate mean (i.e., high index years minus cliamte mean).
c       dl: composite difference between the mean of f in low index years of x(n)
c            and its climate mean (i.e., low index years minus cliamte mean).
c       dhl: composite difference between the means of f in high and low index years
c             of x(n) (i.e., high minus low index years)
c       tn(i,j): tn only equals 2., -2., 1., -1. or 0. corresponding to significant difference or not.
c           tn=2. indicates that the difference is positive and significant.
c           tn=-2. indicates that the difference is negative and significant.
c           tn=1. indicates that the difference is positive but not significant.
c           tn=-1. indicates that the difference is negative but not significant.
c           tn=0. indicates the difference is zero.
c           tn(1,j)~tn(5,j) are corresponding to the 90%,95%,98%,99% and 99.9% confident levels.
c           j=1: siginificant test for dh
c           j=2: siginificant test for dl
c           j=3: siginificant test for dhl
c     Feburary 11, 2002 by Jianping Li.
      subroutine differencehl1(n,x,f,coefh,coefl,fh,fl,dh,dl,dhl,tn)
      dimension x(n),f(n),tn(5,3)
      real hn(n),ln(n) !work array
      call meanvar(n,f,avef,sf,vf)
      fh=0.
      fl=0.
      nh=0
      nl=0
      do k=1,n
        if(x(k).gt.coefh)then
          nh=nh+1
          hn(nh)=f(k)
        endif
        if(x(k).lt.coefl)then
          nl=nl+1
          ln(nl)=f(k)
        endif
      enddo
      call meanvar1(nh,hn,fh)
      call meanvar1(nl,ln,fl)
      dh=fh-avef
      dl=fl-avef
      dhl=fh-fl
      call diff_t_test(nh,n,hn,f,tn(1,1))
      call diff_t_test(nl,n,ln,f,tn(1,2))
      call diff_t_test(nh,nl,hn,ln,tn(1,3))
      return
      end
c-----*----------------------------------------------------6---------7--
c     Student's t-test for the difference between two means
c     input: n,m,x(n),y(m)
c       n: number of x
c       m: number of y
c       x(n): series
c       y(m): series
c     output: tn(5)
c       tn: tn only equals 2, -2., 1, -1. or 0. corresponding to significant difference or not.
c           tn=2. indicates that the difference is positive and significant.
c           tn=-2. indicates that the difference is negative and significant.
c           tn=1. indicates that the difference is positive but not significant.
c           tn=-1. indicates that the difference is negative but not significant.
c           tn=0. indicates the difference is zero.
c           tn(1)~tn(5) are corresponding to the 90%,95%,98%,99% and 99.9% confident levels.
c     By Dr. Jianping Li, March 05, 2004
      subroutine diff_t_test(n,m,x,y,tn)
      parameter(nn=10000)
      real x(n),y(m),tn(5)
      real ft(nn,5) !work array
      do i=1,5
        tn(i)=0.
      enddo
      call meanvar(n,x,ax,sx,vx)
      call meanvar(m,y,ay,sy,vy)
      sxy=(n*vx+m*vy)/(n+m-2.)
      sxy=sxy*(1./n+1./m)
      sxy=sqrt(sxy)
      if(sxy.eq.0.)return
      dxy=ax-ay
      if(dxy.gt.0.)then
        sn=2.
        do i=1,5
          tn(i)=1.
        enddo
      else
        sn=-2.
        do i=1,5
          tn(i)=-1.
        enddo
      endif
      ta=abs(dxy)/sxy
      nm=n+m-2
      call t_table(ft(1,1),ft(1,2),ft(1,3),ft(1,4),ft(1,5))
      do i=1,5
        if(ta.ge.ft(nm,i))then
          tn(i)=sn
        endif
      enddo
      return
      end
c-----*----------------------------------------------------6---------7--
c     Computing the mean ax, standard deviation sx
c       and variance vx of a series x(i) (i=1,...,n).
c     input: n and x(n)
c       n: number of raw series
c       x(n): raw series
c     output: ax, sx and vx
c       ax: the mean value of x(n)
c       sx: the standard deviation of x(n)
c       vx: the variance of x(n)
c     By Dr. LI Jianping, May 6, 1998.
      subroutine meanvar(n,x,ax,sx,vx)
      dimension x(n)
      ax=0.
      vx=0.
      sx=0.
      do 10 i=1,n
        ax=ax+x(i)
  10  continue
      ax=ax/float(n)
      do 20 i=1,n
        vx=vx+(x(i)-ax)**2
  20  continue
      vx=vx/float(n)
      sx=sqrt(vx)
      return
      end
c-----*----------------------------------------------------6---------7--
c     Computing the mean ax of a series x(i) (i=1,...,n).
c     input: n and x(n)
c       n: number of raw series
c       x(n): raw series
c     output: ax
c       ax: the mean value of x(n)
c     By Dr. LI Jianping, May 6, 1999.
      subroutine meanvar1(n,x,ax)
      dimension x(n)
      ax=0.
      vx=0.
      sx=0.
      do 10 i=1,n
        ax=ax+x(i)
  10  continue
      ax=ax/float(n)
      return
      end
c-----*----------------------------------------------------6---------7--
c     t-distribution, i.e., student's distribution
c     t table with two-tailed (right and left tails) probabilities
c       P(|t|>=ta)=a
c       where a (alpha) significance level and (1-a)*100% is confindence level.
c     t90: t-distribution test at 90% confidence level.
c     t95: t-distribution test at 95% confidence level.
c     t98: t-distribution test at 98% confidence level.
c     t99: t-distribution test at 99% confidence level.
c     t999: t-distribution test at 99.9% confidence level.
c     By Dr. Jianping Li, January 5, 2000.
      subroutine t_table(ft90,ft95,ft98,ft99,ft999)
      parameter(n=10000)
      dimension ft90(n),ft95(n),ft98(n),ft99(n),ft999(n)
      dimension n90(30),n95(30),n98(30),n99(30),n999(30)
      data n90/ 6314,2920,2353,2132,2015,1943,1895,1860,1833,1812,
     *          1796,1782,1771,1761,1753,1746,1740,1734,1729,1725,
     *          1721,1717,1714,1711,1708,1706,1703,1701,1699,1697/
      data n95/12706,4303,3182,2776,2571,2447,2365,2306,2262,2228,
     *          2201,2179,2160,2145,2131,2120,2110,2101,2093,2086,
     *          2080,2074,2069,2064,2060,2056,2052,2048,2045,2042/
      data n98/31821,6965,4541,3747,3365,3143,2998,2896,2821,2764,
     *          2718,2681,2650,2624,2602,2583,2567,2552,2539,2528,
     *          2518,2508,2500,2492,2485,2479,2473,2467,2462,2457/
      data n99/63657,9925,5841,4604,4032,3707,3499,3355,3250,3169,
     *          3106,3055,3012,2977,2947,2921,2898,2878,2861,2845,
     *          2831,2819,2807,2797,2787,2779,2771,2763,2756,2750/
      data n999/636619,31598,12941,8610,6859,5959,5405,5041,4781,
     *     4587,4437,4318,4221,4140,4073,4015,3965,3922,3883,3850,
     *          3819,3792,3767,3745,3725,3707,3690,3674,3659,3646/
      do 10 i=1,30
        ft90(i)=n90(i)/1000.
        ft95(i)=n95(i)/1000.
        ft98(i)=n98(i)/1000.
        ft99(i)=n99(i)/1000.
        ft999(i)=n999(i)/1000.
  10  continue
      do 20 i=31,40
        fi=(i-30.)/10.
        ft90(i)=1.697-(1.697-1.684)*fi
        ft95(i)=2.042-(2.042-2.021)*fi
        ft98(i)=2.457-(2.457-2.423)*fi
        ft99(i)=2.750-(2.750-2.704)*fi
        ft999(i)=3.646-(3.646-3.551)*fi
  20  continue
      do 30 i=41,60
        fi=(i-40.)/20.
        ft90(i)=1.684-(1.684-1.671)*fi
        ft95(i)=2.021-(2.021-2.000)*fi
        ft98(i)=2.423-(2.423-2.390)*fi
        ft99(i)=2.704-(2.704-2.660)*fi
        ft999(i)=3.551-(3.551-3.460)*fi
  30  continue
      do 40 i=61,120
        fi=(i-60.)/60.
        ft90(i)=1.671-(1.671-1.658)*fi
        ft95(i)=2.000-(2.000-1.980)*fi
        ft98(i)=2.390-(2.390-2.358)*fi
        ft99(i)=2.660-(2.660-2.617)*fi
        ft999(i)=3.460-(3.460-3.373)*fi
  40  continue
      do 50 i=121,n
        fi=(i-120.)/(n-120.)
        ft90(i)=1.658-(1.658-1.645)*fi
        ft95(i)=1.980-(1.980-1.960)*fi
        ft98(i)=2.358-(2.358-2.326)*fi
        ft99(i)=2.617-(2.617-2.576)*fi
        ft999(i)=3.373-(3.373-2.291)*fi
  50  continue
      return
      end

密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2012-12-1 21:44:10 | 显示全部楼层
好长啊
密码修改失败请联系微信:mofangbao

新浪微博达人勋

 楼主| 发表于 2012-12-5 19:32:04 | 显示全部楼层
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2012-12-5 23:15:23 | 显示全部楼层
正好要用,试试看,谢谢分享~~~
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2012-12-5 23:39:17 | 显示全部楼层
亲爱的,李建平的网页上也有啊http://ljp.lasg.ac.cn/dct/page/65539
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2013-5-10 16:23:35 | 显示全部楼层
刚好要用合成分析,谢谢分享!
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2013-5-16 22:33:46 | 显示全部楼层
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2014-4-23 14:26:54 | 显示全部楼层
合成分析能不能直接用grdads做呢
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2014-4-23 14:27:28 | 显示全部楼层
写错了  是grads...
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2014-5-5 15:44:46 | 显示全部楼层
嗯,最近要学习这, hold on
密码修改失败请联系微信:mofangbao
您需要登录后才可以回帖 登录 | 立即注册 新浪微博登陆

本版积分规则

Copyright ©2011-2014 bbs.06climate.com All Rights Reserved.  Powered by Discuz! (京ICP-10201084)

本站信息均由会员发表,不代表气象家园立场,禁止在本站发表与国家法律相抵触言论

快速回复 返回顶部 返回列表