- 积分
- 214
- 贡献
-
- 精华
- 在线时间
- 小时
- 注册时间
- 2011-10-10
- 最后登录
- 1970-1-1
|
登录后查看更多精彩内容~
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
前几天一直在琢磨着怎么把eof程序的特征向量场画成特征值的开平方与特征向量乘积形式,因为这样可以使图上的数值显示为主成分与原始场的相关系数,一个偶然的机会让我画了出来,用的是论坛里下的李建平的eof程序,稍微修改了下。不多废话,上程序上图:
-
- cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
- c c
- c EMPIRICAL ORTHOGONAL FUNCTIONS (EOF's) c
- c c
- cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
- c
- c Last updated by YONGJIE HUANG, Mar 2, 2012.
- c
- c-----*----------------------------------------------------6---------7--
- c The parameters you need to change:
- c datefname - Name of input data file;
- c n - Length of time series, viz. sample size;
- c mx - Grids in row;
- c my - Grids in column;
- c mnl - Min(m,n)
- c undef - Missing value;
- c mg1 & mg2 - The efficient grids (output on screen) and cancel the
- c "stop" in line 96, try again.
- c ks - Contral parameter:
- c ks=-1: self, i.e., for the raw time series;
- c ks=0: departure, i.e., for the anomaly time series from climatological mean;
- c ks=1: normalized departure, i.e., for the normalized time series;
- c km - Contral parameter:
- c km=1: monthly or daily data.
- c km=0: data without annual cycle.
- c nd - The number of the months or days in a year.
- c ------------------------------------------------------------------
- c Output:
- c er.txt - Ascii file with EOF eigenvalues, accumulated eigenvalues,
- c explained variances and accumulated explained variances.
- c egvt.dat - Binary file with eigenvactors matrix of EOF.
- c ecof.dat - Binary file with time coefficients matrix of EOF.
- c egvt.ctl - Control file for 'egvt.dat'.
- c ecof.ctl - Control file for 'ecof.dat'.
- c
- c-----*----------------------------------------------------6---------7--
- program main
- character*80,parameter ::
- & datafname='e:\lunwen\jiala7\gy\svd\qd10.grd'
- parameter(n=30,m=81*101,mnl=n)
- parameter(undef=-9.99e+8,mg1=m,mg2=m)
- parameter(ks=1,km=1,nd=1,std=1e-6)
- !-----input array
- dimension f0(n,m)
- !-----work arrays
- dimension f1(n,mg1),f2(n,mg1),g(mg1),h1(mg1,n),h2(mg1,n)
- dimension f(mg2,n),gvt(mg2,mnl),cof(mnl,n)
- !-----output arrays
- dimension er(mnl,4),egvt(m,mnl),ecof(mnl,n)
- c-----Read data.
- open(20,file=datafname,status='unknown'
- &,form='unformatted',access='direct',recl=m)
- do j=1,n
- read(20,rec=j)(f0(j,i),i=1,m)
- end do
- close(20)
- write(*,*)'Read data OK!'
- c-----Remove the terrain or missing value.
- l1=0
- do j=1,m
- if(f0(1,j).ne.undef)then
- l1=l1+1
- do k=1,n
- f1(k,l1)=f0(k,j)
- enddo
- endif
- enddo
- write(*,*)'Grids without terrain:'
- write(*,*)'mg1=',l1
- c-----Remove annual cycle.
- if(km.eq.1)then
- ny=n/nd
- do i=1,l1
- call initial(nd,ny,n,f1(1,i),f2(1,i))
- end do
- do i=1,l1
- do k=1,n
- f1(k,i)=f2(k,i)
- end do
- end do
- end if
- c-----Remove the grids whose variance equal to zero.
- l2=0
- do i=1,l1
- call meanvar(n,f1(1,i),ax,g(i),vx)
- if(g(i).gt.std)then
- l2=l2+1
- do k=1,n
- f(l2,k)=f1(k,i)
- enddo
- endif
- end do
- write(*,*)'Grids without terrain and constant value:'
- write(*,*)'mg2=',l2
-
- c stop
- c-----Call the subroutine.
- write(*,*)'!!!!'
- call eof(l2,n,mnl,f(1:l2,:),ks,er,gvt(1:l2,:),ecof)
- write(*,*)'EOF ok and transform to the original form in the next!'
- c-----Add the grids whose variance equal to zero.
- l3=0
- do i=1,mg2
- if(g(i).gt.std)then
- l3=l3+1
- do k=1,mnl
- h1(i,k)=gvt(l3,k)
- end do
- else
- do k=1,mnl
- h1(i,k)=undef
- end do
- endif
- enddo
- c-----Add the terrain or missing value.
- l4=0
- do i=1,m
- if(f0(1,i).ne.undef)then
- l4=l4+1
- do k=1,mnl
- egvt(i,k)=h1(l4,k)
- end do
- else
- do k=1,mnl
- egvt(i,k)=undef
- end do
- endif
- enddo
- c-----output the result.
- c-----output the error.
- write(*,*)'Output the results:'
- open(10,file='e:\lunwen\jiala7\gy\eofsst\qd10er.txt',
- &form='formatted')
- c
- write(10,*)'EOF lamda (eigenvalues) from big to small'
- write(10,*)(er(i,1),i=1,mnl)
- write(*,*)' OK: EOF lamda (eigenvalues) from big to small!'
- c
- write(10,*)'EOF accumulated eigenvalues from big to small'
- write(10,*)(er(i,2),i=1,mnl)
- write(*,*)' OK: accumulated eigenvalues from big to small!'
- c
- write(10,*)'EOF explained variances'
- write(10,*)(er(i,3),i=1,mnl)
- write(*,*)' OK: EOF explained variances!'
- c
- write(10,*)'EOF accumulated explained variances'
- write(10,*)(er(i,4),i=1,mnl)
- write(*,*)' OK: EOF accumulated explained variances!'
- c
- close(10)
- c-----output eigenvactors matrix of EOF.
-
- do i=1,m
- if(egvt(i,1).ne.undef)then
-
- do k=1,mnl
- egvt(i,k)=egvt(i,k)*sqrt(abs(er(k,1)/mnl))
- end do
-
- endif
- enddo
- open(11,file='e:\lunwen\jiala7\gy\eofsst\qd10egvt.dat',
- &status='unknown'
- &,form='unformatted',access='direct',recl=m)
- do j=1,mnl
- write(11,rec=j)(egvt(i,j),i=1,m)
- end do
- write(*,*)' OK: output eigenvactors matrix of EOF!'
- close(11)
- c-----output time coefficients matrix of EOF.
- open(12,file='e:\lunwen\jiala7\gy\eofsst\qd10ecof.dat',
- &status='unknown'
- &,form='unformatted',access='direct',recl=mnl)
- do i=1,n
- write(12,rec=i)(ecof(j,i)/sqrt(abs(er(j,1)/mnl)),j=1,mnl)
- end do
- write(*,*)' OK: output time coefficients matrix of EOF!'
- close(12)
- write(*,*)'EOF all OK!'
- c-----create control files(.ctl) for 'egvt.dat' and 'ecof.dat'
- write(*,*) 'Create ''.ctl'' files for ''.dat'' files: '
- ! open(13,file='e:\lunwen\756mon\egvt.ctl',form='formatted')
- write(13,*) 'dset ^egvt.dat'
- write(13,*) 'undef ',undef
- write(13,*) 'xdef ',mx,' linear 88.75 2.5'
- write(13,*) 'ydef ',my,' linear 3.75 2.5'
- write(13,*) 'zdef 1 linear 0 1'
- write(13,*) 'tdef ',mnl,' linear DEC1979 1yr'
- write(13,*) 'vars 1'
- write(13,*) 'egvt 0 99 eigenvactors matrix of EOF'
- write(13,*) 'endvars'
- close(13)
- write(*,*) ' OK: ''egvt.ctl'' is created!'
- c
- ! open(14,file='e:\lunwen\756mon\ecof.ctl',form='formatted')
- write(14,*) 'dset ^ecof.dat'
- write(14,*) 'undef ',undef
- write(14,*) 'xdef ',mnl,' linear 0 1'
- write(14,*) 'ydef 1 linear 0 1'
- write(14,*) 'zdef 1 linear 0 1'
- write(14,*) 'tdef ',n,' linear DEC1979 1yr'
- write(14,*) 'vars 1'
- write(14,*) 'ecof 0 99 eigenvactors matrix of EOF'
- write(14,*) 'endvars'
- close(14)
- write(*,*) ' OK: ''ecof.ctl'' is created!'
- c
- write(*,*) 'All are finished successfully!'
-
- stop
- c-----
- end
- c=======================================================================
- c
- c=======================================================================
- c-----------------------------------------------------------------------
- c eof(m,n,mnl,f,ks,er,egvt,ecof)
- c --------------------------------------
- c 经验正交函数(EOF)-特征向量场及时间系数
- c-----*----------------------------------------------------6---------7--
- C EMPIRICAL ORTHOGONAL FUNCTIONS (EOF's)
- c This subroutine applies the EOF approach to analysis time series
- c of meteorological field f(m,n).
- c input: m,n,mnl,f(m,n),ks
- c m: number of grid-points
- c n: lenth of time series
- c mnl=min(m,n)
- c f(m,n): the raw spatial-temporal seires
- c ks: contral parameter
- c ks=-1: self, i.e., for the raw time series;
- c ks=0: departure, i.e., for the anomaly time series from climatological mean;
- c ks=1: normalized departure, i.e., for the normalized time series;
- c output: egvt,ecof,er
- c egvt(m,mnl): array of eigenvactors
- c ecof(mnl,n): array of time coefficients for the respective eigenvectors
- c er(mnl,1): lamda (eigenvalues), its sequence is from big to small.
- c er(mnl,2): accumulated eigenvalues from big to small
- c er(mnl,3): explained variances (lamda/total explain) from big to small
- c er(mnl,4): accumulated explaned variances from big to small
- c work variables:
- c Last updated by Yongjie HUANG on January 4, 2012
- c Dr. Jianping Li on October 20, 2005.
- c Citation: Li, J., 2005: EOF subroutine, http://web.lasg.ac.cn/staff/ljp/subroutine/EOF.f.
- c-----
- subroutine eof(m,n,mnl,f,ks,er,egvt,ecof)
- dimension f(m,n),er(mnl,4),egvt(m,mnl),ecof(mnl,n)
- dimension cov(mnl,mnl),s(mnl,mnl),d(mnl),v(mnl) !work array
- c---- Preprocessing data
- call transf(m,n,f,ks)
- c---- Crossed product matrix of the data f(m,n)
- call crossproduct(m,n,mnl,f,cov)
- c---- Eigenvalues and eigenvectors by the Jacobi method
- call jacobi(mnl,cov,s,d,0.00001)
- c---- Specified eigenvalues
- call arrang(mnl,d,s,er)
- c---- Normalized eignvectors and their time coefficients
- call tcoeff(m,n,mnl,f,s,er,egvt,ecof)
- return
- end
- c-----------------------------------------------------------------------
- c
- c-----------------------------------------------------------------------
- c-----------------------------------------------------------------------
- c transf(m,n,f,ks)
- c ------------------------------
- c 处理资料为距平、标准方差或不变
- c-----*----------------------------------------------------6---------7--
- c Preprocessing data to provide a field by ks.
- c input: m,n,f
- c m: number of grid-points
- c n: lenth of time series
- c f(m,n): the raw spatial-temporal seires
- c ks: contral parameter
- c ks=-1: self, i.e., for the raw time series;
- c ks=0: departure, i.e., for the anomaly time series from climatological mean;
- c ks=1: normalized departure, i.e., for the normalized time series;
- c output: f
- c f(m,n): output field based on the control parameter ks.
- c work variables: fw(n)
- subroutine transf(m,n,f,ks)
- dimension f(m,n)
- dimension fw(n),wn(m) !work array
- c
- i0=0
- do i=1,m
- do j=1,n
- fw(j)=f(i,j)
- enddo
- call meanvar(n,fw,af,sf,vf)
- if(sf.eq.0.)then
- i0=i0+1
- wn(i0)=i
- endif
- enddo
- c
- if(i0.ne.0)then
- write(*,*)'**** FAULT ****'
- write(*,*)' The program cannot go on because
- *the original field has invalid data.'
- write(*,*)' There are totally ',i0,
- * ' gridpionts with invalid data.'
- write(*,*)' These invalid data are those whose standard variance
- *equal zero.'
- write(*,*)' The array WN stores the positions of those invalid
- *grid-points. You must pick off those invalid data from the orignal
- *field and then reinput a new field to calculate its EOFs.'
- write(*,*)'**** FAULT ****'
- stop
- endif
- c
- c
- if(ks.eq.-1)return
- c
- if(ks.eq.0)then !anomaly of f
- do i=1,m
- do j=1,n
- fw(j)=f(i,j)
- enddo
- call meanvar(n,fw,af,sf,vf)
- do j=1,n
- f(i,j)=f(i,j)-af
- enddo
- enddo
- return
- endif
- c
- if(ks.eq.1)then !normalizing f
- do i=1,m
- do j=1,n
- fw(j)=f(i,j)
- enddo
- call meanvar(n,fw,af,sf,vf)
- do j=1,n
- f(i,j)=(f(i,j)-af)/sf
- enddo
- enddo
- endif
- return
- end
- c-----------------------------------------------------------------------
- c
- c-----------------------------------------------------------------------
- c-----------------------------------------------------------------------
- c crossproduct(m,n,mnl,f,cov)
- c ---------------------------
- c 计算交叉矩阵
- c-----*----------------------------------------------------6---------7--
- c Crossed product martix of the data. It is n times of
- c covariance matrix of the data if ks=0 (i.e. for anomaly).
- c input: m,n,mnl,f
- c m: number of grid-points
- c n: lenth of time series
- c mnl=min(m,n)
- c f(m,n): the raw spatial-temporal seires
- c output: cov(mnl,mnl)
- c cov(m,n)=f*f' or f'f dependes on m and n.
- c It is a mnl*mnl real symmetric matrix.
- subroutine crossproduct(m,n,mnl,f,cov)
- dimension f(m,n),cov(mnl,mnl)
- if(n-m<0) then
- do i=1,mnl
- do j=i,mnl
- cov(i,j)=0.0
- do is=1,m
- cov(i,j)=cov(i,j)+f(is,i)*f(is,j)
- enddo
- cov(j,i)=cov(i,j)
- end do
- end do
- return
- else
- do i=1,mnl
- do j=i,mnl
- cov(i,j)=0.0
- do js=1,n
- cov(i,j)=cov(i,j)+f(i,js)*f(j,js)
- enddo
- cov(j,i)=cov(i,j)
- end do
- end do
- return
- end if
- end
- c-----------------------------------------------------------------------
- c
- c-----------------------------------------------------------------------
- c-----------------------------------------------------------------------
- c jacobi(m,a,s,d,eps)
- c ------------------------------------------
- c 使用雅克比过关法计算矩阵的特征向量和特征值
- c-----*----------------------------------------------------6---------7--
- c Computing eigenvalues and eigenvectors of a real symmetric matrix
- c a(m,m) by the Jacobi method.
- c input: m,a,s,d,eps
- c m: order of matrix
- c a(m,m): the covariance matrix
- c eps: given precision
- c output: s,d
- c s(m,m): eigenvectors
- c d(m): eigenvalues
- subroutine jacobi(m,a,s,d,eps)
- dimension a(m,m),s(m,m),d(m)
- c-----使s(m,m)为单位矩阵E
- do i=1,m
- do j=1,i
- if(i-j==0) then
- s(i,j)=1.
- else
- s(i,j)=0.
- s(j,i)=0.
- end if
- end do
- end do
- c-----计算m阶实对称矩阵a(m,m)的所有非对角线元素平方之和的平方根
- g=0.
- do i=2,m
- i1=i-1
- do j=1,i1
- g=g+2.*a(i,j)*a(i,j)
- end do
- end do
- s1=sqrt(g)
- c-----设置关口s3
- s2=eps/float(m)*s1
- s3=s1
- l=0
- 50 s3=s3/float(m)
- c-----在非对角线元素中逐行扫描选取第一个绝对值大于或等于s3的元素a(ip,iq),
- c-----进行平面旋转变换,直到所有非对角线元素的绝对值都小于s3为止.
- 60 do 130 iq=2,m
- do 130 ip=1,iq-1
- if(abs(a(ip,iq)).lt.s3) goto 130
- l=1
- v1=a(ip,ip)
- v2=a(ip,iq)
- v3=a(iq,iq)
- u=0.5*(v1-v3)
- if(u.eq.0.0) g=1.
- if(abs(u).ge.1e-10) g=-sign(1.,u)*v2/sqrt(v2*v2+u*u)
- st=g/sqrt(2.*(1.+sqrt(1.-g*g)))
- ct=sqrt(1.-st*st)
- do i=1,m
- g=a(i,ip)*ct-a(i,iq)*st
- a(i,iq)=a(i,ip)*st+a(i,iq)*ct
- a(i,ip)=g
- g=s(i,ip)*ct-s(i,iq)*st
- s(i,iq)=s(i,ip)*st+s(i,iq)*ct
- s(i,ip)=g
- end do
- do i=1,m
- a(ip,i)=a(i,ip)
- a(iq,i)=a(i,iq)
- end do
- g=2.*v2*st*ct
- a(ip,ip)=v1*ct*ct+v3*st*st-g
- a(iq,iq)=v1*st*st+v3*ct*ct+g
- a(ip,iq)=(v1-v3)*st*ct+v2*(ct*ct-st*st)
- a(iq,ip)=a(ip,iq)
- 130 continue
- c-----平面旋转变换,直到所有非对角线元素的绝对值都小于s3为止.
- if(l-1==0) then
- l=0
- go to 60
- else
- if(s3.gt.s2) goto 50 !再设置下一关口
- end if
- c
- do i=1,m
- d(i)=a(i,i)
- end do
- return
- end
- c-----------------------------------------------------------------------
- c
- c-----------------------------------------------------------------------
- c-----------------------------------------------------------------------
- c arrang(mnl,d,s,er)
- c ----------------------------------------------------------------
- c 重新由大到小排列及计算特征值、累积特征值、解释方差及累积解释方差
- c-----*----------------------------------------------------6---------7--
- c Provides a series of eigenvalues from maximuim to minimuim.
- c input: mnl,d,s
- c d(mnl): eigenvalues
- c s(mnl,mnl): eigenvectors
- c output: er
- c er(mnl,1): lamda (eigenvalues), its equence is from big to small.
- c er(mnl,2): accumulated eigenvalues from big to small
- c er(mnl,3): explained variances (lamda/total explain) from big to small
- c er(mnl,4): accumulated explaned variances from big to small
- subroutine arrang(mnl,d,s,er)
- dimension d(mnl),s(mnl,mnl),er(mnl,4)
- c
- tr=0.0
- do i=1,mnl
- tr=tr+d(i)
- er(i,1)=d(i)
- end do
- c-----由大到小排列特征值及将对应的特征向量做相应的移动
- mnl1=mnl-1
- do k1=mnl1,1,-1
- do k2=k1,mnl1
- if(er(k2,1).lt.er(k2+1,1)) then
- c=er(k2+1,1)
- er(k2+1,1)=er(k2,1)
- er(k2,1)=c
- do i=1,mnl
- c=s(i,k2+1)
- s(i,k2+1)=s(i,k2)
- s(i,k2)=c
- end do
- endif
- end do
- end do
- c-----计算累积特征值
- er(1,2)=er(1,1)
- do i=2,mnl
- er(i,2)=er(i-1,2)+er(i,1)
- end do
- c-----计算解释方差及累积解释方差
- do i=1,mnl
- er(i,3)=er(i,1)/tr
- er(i,4)=er(i,2)/tr
- end do
- c
- return
- end
- c-----------------------------------------------------------------------
- c
- c-----------------------------------------------------------------------
- c-----------------------------------------------------------------------
- c tcoeff(m,n,mnl,f,s,er,egvt,ecof)
- c --------------------------------
- c 归一化特征向量和时间系数
- c-----*----------------------------------------------------6---------7--
- c Provides standard eigenvectors and their time coefficients
- c input: m,n,mnl,f,s,er
- c m: number of grid-points
- c n: lenth of time series
- c mnl=min(m,n)
- c f(m,n): the raw spatial-temporal seires
- c s(mnl,mnl): eigenvectors
- c er(mnl,1): lamda (eigenvalues), its equence is from big to small.
- c er(mnl,2): accumulated eigenvalues from big to small
- c er(mnl,3): explained variances (lamda/total explain) from big to small
- c er(mnl,4): accumulated explaned variances from big to small
- c output: egvt,ecof
- c egvt(m,mnl): normalized eigenvectors
- c ecof(mnl,n): time coefficients of egvt
- subroutine tcoeff(m,n,mnl,f,s,er,egvt,ecof)
- dimension f(m,n),s(mnl,mnl),er(mnl,4),egvt(m,mnl),ecof(mnl,n)
- dimension v(mnl) !work array
- c
- do j=1,mnl
- do i=1,m
- egvt(i,j)=0.
- enddo
- do i=1,n
- ecof(j,i)=0.
- enddo
- enddo
- c-----Normalizing the input eignvectors s
- do j=1,mnl
- c=0.
- do i=1,mnl
- c=c+s(i,j)*s(i,j)
- enddo
- c=sqrt(c)
- do i=1,mnl
- s(i,j)=s(i,j)/c
- enddo
- enddo
- c-----
- if(m.le.n) then
- do js=1,mnl
- do i=1,m
- egvt(i,js)=s(i,js)
- enddo
- enddo
- do j=1,n
- do i=1,m
- v(i)=f(i,j)
- enddo
- do is=1,mnl
- do i=1,m
- ecof(is,j)=ecof(is,j)+v(i)*s(i,is)
- enddo
- enddo
- enddo
- else
- c-----这里使用了时空转换,时间系数得乘以sqrt(abs(er(js,1)),特征向量除以sqrt(abs(er(js,1))
- do i=1,m
- do j=1,n
- v(j)=f(i,j)
- enddo
- do js=1,mnl
- do j=1,n
- egvt(i,js)=egvt(i,js)+v(j)*s(j,js)
- enddo
- enddo
- enddo
- do js=1,mnl
- do j=1,n
- ecof(js,j)=s(j,js)*sqrt(abs(er(js,1)))
- enddo
- do i=1,m
- egvt(i,js)=egvt(i,js)/sqrt(abs(er(js,1)))
- enddo
- enddo
- endif
- return
- end
- c-----------------------------------------------------------------------
- c
- c-----------------------------------------------------------------------
-
- c-----------------------------------------------------------------------
- c meanvar(n,x,ax,sx,vx)
- c -------------------------------
- c 计算矩阵的平均值、标准差和方差
- c-----*----------------------------------------------------6---------7--
- c Computing the mean ax, standard deviation sx
- c and variance vx of a series x(i) (i=1,...,n).
- c input: n and x(n)
- c n: number of raw series
- c x(n): raw series
- c output: ax, sx and vx
- c ax: the mean value of x(n)
- c sx: the standard deviation of x(n)
- c vx: the variance of x(n)
- c By Dr. LI Jianping, May 6, 1998.
- subroutine meanvar(n,x,ax,sx,vx)
- dimension x(n)
- ax=0.
- vx=0.
- sx=0.
- c calculate the mean value of x(n): ax
- do i=1,n
- ax=ax+x(i)
- end do
- ax=ax/float(n)
- c calculate the standard deviation of x(n): sx
- do i=1,n
- vx=vx+(x(i)-ax)**2
- end do
- vx=vx/float(n)
- c calculate the variance of x(n): vx
- sx=sqrt(vx)
- return
- end
- c-------------------------------------------------------------------------
- c
- c-------------------------------------------------------------------------
- c-----*----------------------------------------------------6---------7--
- c This subroutine is for removing annual cycle (Monthly of daily data)
- c
- c input:
- c nd: number of days or monthes in a year.
- c ny: number of year
- c ndy=nd*ny
- c f(ndy): the daily of monthly data.
- c
- c output:
- c af(ndy): the daily of monthly data without annual cycle
- c
- c by Dr Jianping Li,
- c recomplied by Dong Xiao on May 7, 2007
- c-----
- subroutine initial(nd,ny,ndy,f,af)
- !-----input array
- real f(ndy)
- !-----work arrays
- real fave(nd),fstd(nd)
- !-----output array
- real af(ndy)
- c-----
- do i=1,nd
- fave(i)=0.
- do j=1,ny
- fave(i)=fave(i)+f(i+(j-1)*nd)
- enddo
- fave(i)=fave(i)/ny
- fstd(i)=0.0
- do j=1,ny
- fstd(i)=fstd(i)+(f(i+(j-1)*nd)-fave(i))**2
- enddo
- fstd(i)=sqrt(fstd(i)/float(ny))
- do j=1,ny
- ij=i+(j-1)*nd
- c-----standard departure
- c af(ij)=(f(ij)-fave(i))/fstd(i)
- c-----departure
- af(ij)=(f(ij)-fave(i))
- enddo
- enddo
- c-----
- return
- end
- c-----*----------------------------------------------------6---------7--
- c
- c-----------------------------------------------------------------------
|
-
评分
-
查看全部评分
|