爱气象,爱气象家园! 

气象家园

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
12
返回列表 发新帖
楼主: 15195775117

[混合编程] IDL编程学习资料

[复制链接]
 楼主| 发表于 2017-8-8 16:45:15 | 显示全部楼层
拟合与插值的联系?
拟合与插值有什么区别,是很多年隐隐浮现在我脑海的疑问,现在看来,拟合的要求高,插值的要求低,因为拟合是要有公式的,插值则没有公式,拟合必须使用既有的数学公式,而且如何达到最精确,是个颇有难度的问题。根据已有的点进行插值则比较自由。
密码修改失败请联系微信:mofangbao
 楼主| 发表于 2017-8-8 17:04:44 | 显示全部楼层
非线性拟合之LMfit

似乎很有应用价值哟

                               
登录/注册后可看大图


The LMFIT function does a non-linear least squares fit to a function with an arbitrary number of parameters. LMFIT uses the Levenberg-Marquardt(列文伯格-马夸尔特) algorithm, which combines the steepest descent(最速下降法) and inverse-Hessian(海森) function fitting methods. The function may be any non-linear function.
Iterations are performed until three consecutive iterations fail to change the chi-square value by more than the specified tolerance amount, or until a maximum number of iterations have been performed. The LMFIT function returns a vector of values for the dependent variables, as fitted by the function fit.
The initial guess of the parameter values should be as close to the actual values as possible or the solution may not converge(还是要先验值啊). Test the value of the variable specified by the CONVERGENCE keyword to determine whether the algorithm converged, failed to converge, or encountered a singular matrix.
密码修改失败请联系微信:mofangbao
 楼主| 发表于 2017-8-8 17:21:39 | 显示全部楼层
多项式拟合poly_fit
The POLY_FIT function performs a least-square polynomial(多项式) fit with optional weighting(权重) and returns a vector of coefficients.
The POLY_FIT routine uses matrix inversion to determine the coefficients.A different version of this routine, SVDFIT, uses singular value decomposition (SVD). The SVD technique is more flexible and robust(鲁棒), but may be slower.
既然SVDfit更好,还要poly_fit作甚?
密码修改失败请联系微信:mofangbao
发表于 2017-8-9 11:10:58 | 显示全部楼层
{:eb502:}{:eb502:}{:eb502:}{:eb502:}
密码修改失败请联系微信:mofangbao
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Copyright ©2011-2014 bbs.06climate.com All Rights Reserved.  Powered by Discuz! (京ICP-10201084)

本站信息均由会员发表,不代表气象家园立场,禁止在本站发表与国家法律相抵触言论

快速回复 返回顶部 返回列表