- 积分
- 3601
- 贡献
-
- 精华
- 在线时间
- 小时
- 注册时间
- 2012-9-8
- 最后登录
- 1970-1-1
|
登录后查看更多精彩内容~
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
本帖最后由 hillside 于 2013-8-9 07:08 编辑
EEMD在气候学中的应用仍比较薄弱,因此本处介绍的EEMD改进算法CEEMDAN进入气候学领域可能还需要一段时日。
与在气象气候界已有较多应用的EMD相比,EEMD有着一定的优势。CEEMDAN在某些方面据称改进了EEMD。
现介绍一位生物信号处理研究者的CEEMDAN的主页与程序:
http://bioingenieria.edu.ar/grup ... e_inter.htm#Codigos
Biomedical Signal Processing
Chaos and complexity
Fractals, self similarity, LRD
Time - scale/frequency analysis - Wavelet Analysis
Empirical Mode Decomposition (EMD)
Advanced signal analysis
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)Matlab code - rar file (download)
Reference paper: (http://www.cmsworldwide.com/ICASSP2011/Papers/ViewPapers.asp?PaperNum=3385 )
M.E.Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin, "A complete Ensemble Empirical Mode decomposition with adaptive noise," IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-11, pp. 4144-4147, Prague (CZ). (pdf) Bibref (download)
Abstract: In this paper an algorithm based on the ensemble empirical mode decomposition (EEMD) is presented. The key idea on the EEMD relies on averaging the modes obtained by EMD applied to several realizations of Gaussian white noise added
to the original signal. The resulting decomposition solves the EMD mode mixing problem, however it introduces new ones.
In the method here proposed, a particular noise is added at each stage of the decomposition and a unique residue is computed
to obtain each mode. The resulting decomposition is complete, with a numerically negligible error. Two examples
are presented: a discrete Dirac delta function and an electrocardiogram signal. The results show that, compared with
EEMD, the new method here presented also provides a better spectral separation of the modes and a lesser number of
sifting iterations is needed, reducing the computational cost.
就CEEMDAN字面而言,也表示另一种EEMD的改进算法(Complementary EEMD)。它已经得到了较多的使用。
气象家园相关帖:
[源代码] 气候统计的新武器——EMD的升级版EEMD(集合经验模态分解)
共同提出EEMD(集合经验模态分析)数学统计方法的气候学者——吴召华
|
评分
-
查看全部评分
|