| 
 
	积分701贡献 精华在线时间 小时注册时间2015-1-8最后登录1970-1-1 
 | 
 
| 
# coding=utf-8
x
登录后查看更多精彩内容~您需要 登录 才可以下载或查看,没有帐号?立即注册 
  from typing import Any
 
 import netCDF4 as nc
 import numpy as np
 import cartopy.crs as ccrs
 import matplotlib.pyplot as plt
 import cartopy.mpl.ticker as cticker
 from numpy import random, ndarray, dtype, floating
 from cartopy.io import shapereader
 from wrf import to_np, getvar, interplevel, smooth2d, get_cartopy, cartopy_xlim, cartopy_ylim, latlon_coords, vertcross, smooth2d, CoordPair, GeoBounds,interpline
 from matplotlib import colors
 from matplotlib.colors import LinearSegmentedColormap
 import xarray as xr
 import matplotlib.colors as col
 import cmaps
 
 def rgb_to_hex(rgb):
 return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2])
 from matplotlib.ticker import FuncFormatter
 def format_func(value, tick_number):
 # 自定义格式化函数
 if value < 1:
 return f'{value:.1f}'  # 小于0.1时使用科学计数法
 else:
 return f'{value:.0f}'  # 其他情况保留两位小数
 # cbar = plt.colorbar(format=FuncFormatter(format_func))
 # NCL precip3_16lev
 NCL1 = rgb_to_hex((254, 255, 255))
 NCL2 = rgb_to_hex((255, 245, 204))
 NCL3 = rgb_to_hex((255, 230, 112))
 NCL4 = rgb_to_hex((255, 204, 51))
 NCL5 = rgb_to_hex((255, 175, 51))
 NCL6 = rgb_to_hex((255, 153, 51))
 NCL7 = rgb_to_hex((255, 111, 51))
 NCL8 = rgb_to_hex((255, 85, 0))
 NCL9 = rgb_to_hex((230, 40, 30))
 NCL10 = rgb_to_hex((200, 20, 30))
 NCL11 = rgb_to_hex((166, 15, 20))
 NCL12 = rgb_to_hex((120, 10, 15))
 NCL13 = rgb_to_hex((120, 0, 90))
 NCL14 = rgb_to_hex((148, 0, 211))
 NCL15 = rgb_to_hex((186, 85, 211))
 NCL16 = rgb_to_hex((160, 160, 160))
 NCL17 = rgb_to_hex((192, 192, 192))
 color = ( NCL1, NCL2, NCL3, NCL4, NCL5, NCL6, NCL7, NCL8, NCL9,
 NCL10, NCL11, NCL12, NCL13, NCL14, NCL15,NCL16,NCL17)
 # cpool = [ NCL1, NCL2, NCL3, NCL4, NCL5, NCL6, NCL7, NCL8, NCL9,
 #              NCL10, NCL11, NCL12, NCL13, NCL14, NCL15,NCL16,NCL17]
 # cmap = col.ListedColormap(cpool, 'indexed')
 # print(cpool)  # 输出: #ffa500
 #mycolor=['white', 'lightgreen' ,'cyan','lightyellow','yellow','orange' , 'red']
 #cmap = colors.LinearSegmentedColormap.from_list('my_list', mycolor)
 
 shp_path = r'/mnt/d/LPCC/ncl/chinamap/Chinap_Areas.shp'
 shpn_path = r'/mnt/d/LPCC/ncl/chinamap/nine.shp'
 wrf_file = '/mnt/d/BaiduNetdiskDownload/wrfoutnco985.nc'
 
 wrf_data = nc.Dataset(wrf_file, 'r')
 #print(wrf_data.variables)
 lat = wrf_data.variables['XLAT'][0, :, :]
 lon = wrf_data.variables['XLONG'][0, :, :]
 print(lat,lon.shape)
 
 for i in range(0,145):#左闭右开
 dtim = wrf_data.variables['Times'][i,:]
 dstr =  ''.join([p.decode() for p in dtim])
 stim = dstr[0:4] + dstr[5:7] + dstr[8:10] + dstr[11:13] + '00'
 print(stim)
 plt.close()
 ua = wrf_data.variables['U'][i,:,:]
 va = wrf_data.variables['V'][i,:,:]
 p = wrf_data.variables['PB'][i,:,:]/100
 z = wrf_data.variables['Z'][i,:,:]
 u = ua[:,:,0:479]
 v = va[:,0:319,:]
 pm1 = wrf_data.variables['DUST_1'][i,:,:]
 pm2 = wrf_data.variables['DUST_2'][i, :, :]
 pm3 = wrf_data.variables['DUST_3'][i, :, :]
 pm4 = wrf_data.variables['DUST_4'][i, :, :]
 pm5 = wrf_data.variables['DUST_5'][i, :, :]
 pm = pm1+pm2+pm3+pm4+pm5
 #print(p.shape,z.shape,u.shape,v.shape)
 pp=700
 h_p = interplevel(z, p, pp)
 u_p = interplevel(u, p, pp)
 v_p = interplevel(v, p, pp)
 w_p = np.sqrt(u_p**2 + v_p**2)
 pm_p = interplevel(pm, p, pp)
 dsat = pm_p
 # print(h_p.shape,u_p.shape,v_p.shape,pm_p.shape,w_p.shape)
 
 proj = ccrs.PlateCarree(central_longitude=245)     #选择投影
 fig = plt.figure(figsize=(6, 4.9), dpi=200)  # 创建图形
 fig_ax1 = fig.add_axes([0.1, 0.1, 0.87, 0.87], projection=proj)
 proj = ccrs.PlateCarree(central_longitude=90)  # 设置边界
 leftlon, rightlon, lowerlat, upperlat = (70, 141, 15, 61)
 img_extent = [leftlon, rightlon, lowerlat, upperlat]
 fig_ax1.set_extent(img_extent, crs=ccrs.PlateCarree())
 # 绘制海岸线和湖泊等地理特征
 reader = shapereader.Reader(shp_path)
 for record in reader.records():
 fig_ax1.add_geometries([record.geometry], ccrs.PlateCarree(), facecolor='none')
 reader = shapereader.Reader(shpn_path)
 for record in reader.records():
 fig_ax1.add_geometries([record.geometry], ccrs.PlateCarree(), facecolor='none')
 #设置刻度及刻度标签格式
 fig_ax1.set_xticks(np.arange(leftlon,rightlon,10), crs=ccrs.PlateCarree())
 fig_ax1.set_yticks(np.arange(lowerlat,upperlat,5), crs=ccrs.PlateCarree())
 lon_formatter = cticker.LongitudeFormatter()
 lat_formatter = cticker.LatitudeFormatter()
 fig_ax1.xaxis.set_major_formatter(lon_formatter)
 fig_ax1.yaxis.set_major_formatter(lat_formatter)
 #绘制相关系数填色
 #print(r)
 #根据数据序列调整色标levels =np.arange(-.05,.05,0.005)
 # print(lon.shape,lat.shape,dsat.shape)
 #clevs = [0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8]  # 200
 #clevs = [50,60,80,100,120,150,180, 210, 250,290, 330, 370, 410,450,500,550,600] #400
 #clevs = [50,60,80,100,120,150,180, 210, 250,290, 330, 370, 410,450,500,550,600] #500
 clevs = [50,60,80,100,130,160,190, 220, 250,300, 350, 400, 450,500,550,600,700] #700
 #clevs = [50,60,80,100,130,160,190, 220, 250,300, 350, 400, 450,500,550,600,700] #850
 cf1 = fig_ax1.contourf(lon, lat, dsat, zorder=0, levels=clevs, extend='both', transform=ccrs.PlateCarree(),
 colors=color)  # 绘制显著性打点。思路为将0-0.05范围内的区域用点的标记来填充,来表示显著性95%水平。
 # 色标
 position = fig.add_axes([0.2, 0.1, 0.6, 0.025])
 cbar = fig.colorbar(cf1, cax=position, orientation='horizontal', format=FuncFormatter(format_func))
 cbar.ax.xaxis.set_tick_params(labelrotation=90)
 cbar.set_ticks(clevs)  # 设置刻度
 # plt.show()
 lonc = to_np(lon[::20,::20])
 latc = to_np(lat[::20,::20])
 uc = to_np(u_p[::20,::20])
 vc = to_np(v_p[::20,::20])
 hm = to_np(h_p[::20,::20])/9.8
 hp = smooth2d(smooth2d(hm, 3, cenweight=4), 3, cenweight=4)
 # print(lonc.dtype,latc.dtype,uc.dtype,vc.dtype)
 m = fig_ax1.contour(lonc, latc, hp, linewidths=1.3, colors='b', levels=np.arange(100, 1600,4),transform=ccrs.PlateCarree())  # 200_700
 #m = fig_ax1.contour(lonc,latc, hp, linewidths=1.3, colors='b',  levels=np.arange(200,1600,4),transform=ccrs.PlateCarree()) #200_700
 #m = fig_ax1.contour(lonc, latc, hp, linewidths=1.3, colors='b', levels=np.arange(100, 240, 2),transform=ccrs.PlateCarree())  #850
 fig_ax1.clabel(m, inline=True, fmt='%.f', fontsize=10)
 
 # c = fig_ax1.quiver(lonc,latc, uc, vc, color='b', angles='xy', scale=1000, width=0.002, transform=ccrs.PlateCarree())
 # plt.quiverkey(c, X=0.98, Y=1.02, U=20, angle=90, labelpos='W', label='Wind:20m/s', color='r', labelcolor='r')
 # c = fig_ax1.streamplot(lon, lat, u, v, color = 'navy', density = 3.0, linewidth = 1.2, transform = ccrs.PlateCarree())
 
 s = fig_ax1.barbs(lonc,latc, uc, vc, linewidth=0.4,
 barb_increments={'half': 2, 'full': 4, 'flag': 20},
 sizes=dict(spacing=0.13, width=0.18, emptybarb=0.26, height=0.3),
 length=5.4, zorder=9,transform=ccrs.PlateCarree())
 
 plt.title("Dust(ug/kg) & UV (m/s) & High(dgpm)    "+stim, x=0.5, y=31)
 
 # plt.show()
 plt.savefig('/mnt/d/LPCC/ncl/WRF_LES/HIGH/COMBIN/7001/'+stim+'.png')
 #plt.close()
 
 
 
 
 | 
 |