- 积分
- 1143
- 贡献
-
- 精华
- 在线时间
- 小时
- 注册时间
- 2013-4-24
- 最后登录
- 1970-1-1
|
登录后查看更多精彩内容~
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
eof的程序,算出的数据egvt,ecof,er,怎么编写ctl文件,求大家帮忙编写,本人菜鸟,求大神帮忙,非常急,毕业论文用,非常感谢
我用的原始数据ctl为
dset c:\bylw\prjja.grdtitle from 700station rainfall anomaly JJA ave 1981.6-2010.6(30)undef -9.99e+08xdef 70 linear 70 1ydef 50 linear 10 1zdef 1 levels 1000tdef 30 linear JUN1981 1yrvars 1prjja 1 99 accum conv pcn (mm/d) endvars
eof的程序,算出的数据egvt,ecof,er,怎么编写ctl文件,求大家帮忙编写
! EOF:经验正交函数分解! “实现时空场的分离”具体可以参考黄嘉佑老师的《气象统计分析与预报方法》
! 这是来自“lijianping”老师的EOF分解程序,在此对李建平老师表示感谢O(∩_∩)O~
! 相关参数说明
! m:格点数
! n:时间长度
! mnl:模态数
! ks:[1]-1表示对原场EOF;
! [2]0表示多距平场EOF;
! [3]1表示对归一化场EOF。
! "test.txt" :需要分解的时空场
! "er.txt":存放解释方差 [1]:er(mnl,1)特征值—— [2]:er(mnl,2)累计特征值—— [3]:er(mnl,3)解释方差—— [4]:er(mnl,4)累计解释方差!【20120922补充:解释方差就是对特征值的归一化】
! "ecof.txt":存放时间系数------每一列是一个模态
! "egvt.txt":存放各个模态的空间向量场------每一列是一个模态
program main
integer, parameter:: m=3500,n=30,mnl=30,ks=1
real x(m,n),egvt(m,mnl),ecof(mnl,n),er(mnl,4)
open(1,file='c:/bylw/prjja.grd',form='binary')
read(1)((x(i,j),i=1,m),j=1,n)
close(1)
call eof(m,n,mnl,x,ks,er,egvt,ecof)
open(2,file='h:/lw/eof/er.txt')
do i=1,mnl
write(2,"(4f30.8)") (er(i,j),j=1,4)
enddo
close(2)
open(3,file='h:/lw/eof/ecof.txt')
do j=1,n
write(3,"(<mnl>f20.6)") (ecof(i,j),i=1,mnl)
enddo
close(3)
open(4,file='h:/lw/eof/egvt.txt')
do i=1,m
write(4,"(<mnl>f20.6)") (egvt(i,j),j=1,mnl)
enddo
close(4)
print*,"-------------------------------"
print*,"这是来自李建平老师的EOF分解程序"
print*,"http://bbs.06climate.com整理制作"
print*,"-------------------------------"
100 format(5f15.7)
end
!***************************************************************************
subroutine eof(m,n,mnl,f,ks,er,egvt,ecof)
implicit none
integer*4:: m,n,mnl,ks
real*4:: f(m,n),er(mnl,4),egvt(m,mnl),ecof(mnl,n)
real*4,allocatable:: cov(:,:),s(:,:),d(:)
call transf(m,n,f,ks)
allocate(cov(mnl,mnl))
call crossproduct(m,n,mnl,f,cov)
allocate(s(mnl,mnl))
allocate(d(mnl))
call jacobi(mnl,cov,s,d,0.00001)
call arrang(mnl,d,s,er)
call tcoeff(m,n,mnl,f,s,er,egvt,ecof)
return
end
subroutine transf(m,n,f,ks)
implicit none
integer*4:: m,n,ks
real*4 :: f(m,n)
real*4,allocatable :: fw(:),wn(:)
integer*4 :: i0,i,j
real*4 :: af,sf,vf
allocate(fw(n))
allocate(wn(m))
i0=0
do i=1,m
do j=1,n
fw(j)=f(i,j)
enddo
call meanvar(n,fw,af,sf,vf)
if(sf.eq.0.)then
i0=i0+1
wn(i0)=i
endif
enddo
if(i0.ne.0)then
write(*,*)'************************* fault ***********************************'
write(*,*)'The program cannot go on because the original field has invalid data.'
write(*,*)'There are totally ',i0,'gridpionts with invalid data.'
write(*,*)'The array wn(m) stores the positions of those invalid grid-points.'
write(*,*)'You must pick off those invalid data from the orignal field---$ '
write(*,*)'$---and then reinput a new field to calculate its eofs.'
write(*,*)'************************ fault ************************************'
endif
if(ks.eq.-1)return
if(ks.eq.0)then
do i=1,m
do j=1,n
fw(j)=f(i,j)
enddo
call meanvar(n,fw,af,sf,vf)
do j=1,n
f(i,j)=f(i,j)-af
enddo
enddo
return
endif
if(ks.eq.1)then
do i=1,m
do j=1,n
fw(j)=f(i,j)
enddo
call meanvar(n,fw,af,sf,vf)
if(sf==0.0)then
do j=1,n
f(i,j)=0.0
enddo
else
do j=1,n
f(i,j)=(f(i,j)-af)/sf
enddo
endif
enddo
endif
return
end
subroutine crossproduct(m,n,mnl,f,cov)
implicit none
integer*4 :: m,n,mnl
real*4 :: f(m,n),cov(mnl,mnl)
integer*4 :: i,j,is,js
if((n-m)<0)then
do i=1,mnl
do j=i,mnl
cov(i,j)=0.0
do is=1,m
cov(i,j)=cov(i,j)+f(is,i)*f(is,j)
enddo
cov(j,i)=cov(i,j)
enddo
enddo
else
do i=1,mnl
do j=i,mnl
cov(i,j)=0.0
do js=1,n
cov(i,j)=cov(i,j)+f(i,js)*f(j,js)
enddo
cov(j,i)=cov(i,j)
enddo
enddo
endif
return
end
subroutine jacobi(m,a,s,d,eps)
implicit none
integer*4 :: m
real*4 :: a(m,m),s(m,m),d(m),eps
integer*4 :: i,j,i1,l,iq,iq1,ip
real*4 :: g,s1,s2,s3,v1,v2,v3,u,st,ct
s=0.0
do i=1,m
s(i,i)=1.0
enddo
g=0.
do i=2,m
i1=i-1
do j=1,i1
g=g+2.0*a(i,j)*a(i,j)
enddo
enddo
s1=sqrt(g)
s2=eps/float(m)*s1
s3=s1
l=0
50 s3=s3/float(m)
60 do iq=2,m
iq1=iq-1
do ip=1,iq1
if(abs(a(ip,iq)).lt.s3) exit
l=1
v1=a(ip,ip)
v2=a(ip,iq)
v3=a(iq,iq)
u=0.5*(v1-v3)
if(u.eq.0.0) g=1.
if(abs(u).ge.1e-10) g=-sign(1.,u)*v2/sqrt(v2*v2+u*u)
st=g/sqrt(2.*(1.+sqrt(1.-g*g)))
ct=sqrt(1.-st*st)
do i=1,m
g=a(i,ip)*ct-a(i,iq)*st
a(i,iq)=a(i,ip)*st+a(i,iq)*ct
a(i,ip)=g
g=s(i,ip)*ct-s(i,iq)*st
s(i,iq)=s(i,ip)*st+s(i,iq)*ct
s(i,ip)=g
enddo
do i=1,m
a(ip,i)=a(i,ip)
a(iq,i)=a(i,iq)
enddo
g=2.*v2*st*ct
a(ip,ip)=v1*ct*ct+v3*st*st-g
a(iq,iq)=v1*st*st+v3*ct*ct+g
a(ip,iq)=(v1-v3)*st*ct+v2*(ct*ct-st*st)
a(iq,ip)=a(ip,iq)
enddo
enddo
if((l-1)==0)then
l=0
go to 60
else
go to 150
endif
150 if(s3.gt.s2) then
goto 50
end if
do i=1,m
d(i)=a(i,i)
enddo
return
end
subroutine arrang(mnl,d,s,er)
implicit none
integer*4 :: mnl
real*4 :: d(mnl),s(mnl,mnl),er(mnl,4)
integer*4 :: i,mnl1,k1,k2
real*4 :: c,tr
tr=0.0
do i=1,mnl
tr=tr+d(i)
er(i,1)=d(i)
enddo
mnl1=mnl-1
do k1=mnl1,1,-1
do k2=k1,mnl1
if(er(k2,1).lt.er(k2+1,1)) then
c=er(k2+1,1)
er(k2+1,1)=er(k2,1)
er(k2,1)=c
do i=1,mnl
c=s(i,k2+1)
s(i,k2+1)=s(i,k2)
s(i,k2)=c
enddo
endif
enddo
enddo
er(1,2)=er(1,1)
do i=2,mnl
er(i,2)=er(i-1,2)+er(i,1)
enddo
do i=1,mnl
er(i,3)=er(i,1)/tr
er(i,4)=er(i,2)/tr
enddo
return
end
subroutine tcoeff(m,n,mnl,f,s,er,egvt,ecof)
implicit none
integer*4:: m,n,mnl
real*4:: f(m,n),s(mnl,mnl),er(mnl,4),egvt(m,mnl),ecof(mnl,n)
real*4,allocatable:: v(:)
integer*4:: i,j,js,is
real*4:: c
allocate(v(mnl))
do j=1,mnl
do i=1,m
egvt(i,j)=0.
enddo
do i=1,n
ecof(j,i)=0.
enddo
enddo
do j=1,mnl
c=0.
do i=1,mnl
c=c+s(i,j)*s(i,j)
enddo
c=sqrt(c)
do i=1,mnl
s(i,j)=s(i,j)/c
enddo
enddo
if(m.le.n) then
do js=1,mnl
do i=1,m
egvt(i,js)=s(i,js)
enddo
enddo
do j=1,n
do i=1,m
v(i)=f(i,j)
enddo
do is=1,mnl
do i=1,m
ecof(is,j)=ecof(is,j)+v(i)*s(i,is)
enddo
enddo
enddo
else
do i=1,m
do j=1,n
v(j)=f(i,j)
enddo
do js=1,mnl
do j=1,n
egvt(i,js)=egvt(i,js)+v(j)*s(j,js)
enddo
enddo
enddo
do js=1,mnl
do j=1,n
ecof(js,j)=s(j,js)*sqrt(abs(er(js,1)))
enddo
do i=1,m
egvt(i,js)=egvt(i,js)/sqrt(abs(er(js,1)))
enddo
enddo
endif
return
end
subroutine meanvar(n,x,ax,sx,vx)
implicit none
integer*4 :: n
real*4 :: x(n)
real*4 :: ax,vx,sx
integer*4 :: i
ax=0.
vx=0.
sx=0.
do i=1,n
ax=ax+x(i)
enddo
ax=ax/float(n)
do i=1,n
vx=vx+(x(i)-ax)**2
enddo
vx=vx/float(n)
sx=sqrt(vx)
return
end
|
|