爱气象,爱气象家园! 

气象家园

 找回密码
 立即注册

QQ登录

只需一步,快速开始

新浪微博登陆

只需一步, 快速开始

搜索
查看: 12727|回复: 24

介绍计算标准降水指数SPI的NCL模块

[复制链接]

新浪微博达人勋

发表于 2013-6-11 14:43:53 | 显示全部楼层 |阅读模式

登录后查看更多精彩内容~

您需要 登录 才可以下载或查看,没有帐号?立即注册 新浪微博登陆

x
本帖最后由 hillside 于 2017-3-25 21:23 编辑

注:本文只是简单地直接转载,详情需要有心的网友自行分析了。

http://www.ncl.ucar.edu/Document/Functions/Built-in/dim_spi_n.shtml

Drought

dim_spi_n
Calculates the standardized precipitation index (SPI) by fitting a gamma or a Pearson Type III distribution to monthly precipitation values.

                               
登录/注册后可看大图
Available in version 6.1.0 and later.(注:根据本行说明,计算标准降水指数SPI的NCL模块已经内置于NCL6.1.0版及更高版本。至于模块细节,看来要查询NCL的源代码了,是否公开我也不太清楚)

Prototype        function dim_spi_n (                x        : numeric,  ; float, double                nrun [1] : integer,                  opt      : logical,                  dims : integer           )        return_val  :  float or double
Argumentsx

Monthly precipitation of type 'float' or 'double' and any dimensionality. The size of the specified dims must be divisible by 12. Since a distribution is being fit, there should be a 'reasonably' large sample size. At least 30 years of monthly data (360=12*30) is recommended.
nrun

A scalar that specifies the number of months over which the standardized precipitation index is to be calculated. Common values are 3, 6, 12, 24,36.
opt

Options parameter.
As of NCL version 6.3.0, if opt=True, you can set opt@spi_type = 3 to have this function calculate the standardized precipitation index (SPI) using the Pearson type III distribution.
dims

The dimension(s) of x to be used to estimate the SPI. Usually, this is the record ('time') dimension.
Return value
The returned SPI will be the same shape, size and type as x.
Description
This function calculates the Standardized Precipitation Index (SPI), a probability index that gives a better representation of abnormal wetness and dryness than the Palmer Severe Drought Index (PSDI).
The World Meteorological Organization (WMO) recommends, that all national meteorological and hydrological services should use the SPI for monitoring of dry spells. Some advantages of the SPI:


  • It requires only monthly precipitation.
  • It can be compared across regions with markedly different climates.
  • The standardization of the SPI allows the index to determine the rarity of a current drought.
  • It can be created for differing periods of 1-to-36 months.
A shortcoming of the SPI, as noted by Trenberth et al (2014):

    "the SPI are based on precipitation alone and provide a measure only for water supply.      They are very useful as a measure of precipitation deficits or meteorological drought      but are limited because they do not deal with the ET [evapotranspiration] side of the issue."
As of NCL version 6.3.0, this function will calculate the SPI using two possible methods:



  • Applying a 2-parameter gamma distribution fit (default).
  • Applying a Pearson type III distribution (opt@spi_type = 3).
The default implementation of dim_spi_n uses a 2-parameter gamma distribution fit (dim_gamfit_n) where the shape and scale parameters are maximum likelihood estimates as described in
        A Note on the Gamma Distribution        Thom (1958): Monthly Weather Review, pp 117-122.                     specifically: eqn 22 for gamma; just above eqn 21
However, there is some variation in the methods used to derive the SPI. Guttman (1998, 1999) recommends that the Pearson III distribution be used, which is available in NCL V6.3.0 by setting
opt@spi_type
=3. This option uses code made available at the National Climate Data Center (NCDC). See  spi.f(注:作为原型的FORTRAN版可以下载)

Note: In 2015, the NCDC was merged with the National Geophysical Data Center (NGDC) and the National Oceanic Data Center (NODC) into the National Centers for Environmental Information (NCEI).
Generally, the Pearson III distribution is likely to give essentially equivalent results to the 2-parameter gamma distribution fit. In some instances, where monthly and seasonal precipitation of zero is common, it will give slightly better results.
Generally, monthly precipitation is not normally distributed so a transformation is performed such that the derived SPI values follow a normal distribution. The SPI is the number of standard deviations that the observed value would deviate from the long-term mean, for a normally distributed random variable. One interpretation of the resultant values is:

        [+,-]2.00 and above/below: exceptionally [wet,dry]      [+,-]1.60 to 1.99: extremely [wet,dry]        [+,-]1.30 to 1.59: severely [wet,dry]          [+,-]0.80 to 1.29: moderately [wet,dry]          [+,-]0.51 to 0.79: abnormally [wet,dry]          [+,-]0.50:  near normal
at different run times are available.

More information can be obtained at the ClimateDataGuide.

密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2013-6-12 04:59:37 | 显示全部楼层
{:eb513:}看来不是一下子就可以接受~~工程浩大
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2013-6-12 08:04:34 | 显示全部楼层
谢谢啦,很不错哦!
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2013-8-26 06:14:48 | 显示全部楼层
很好啊,程序很实用谢谢
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2013-10-1 23:24:05 | 显示全部楼层
学习学习
学习学习
学习学习
学习学习
学习学习
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2013-12-9 11:36:01 | 显示全部楼层
正好需要~
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2014-7-10 15:48:35 | 显示全部楼层
学习学习{:lxm_23:}{:lxm_23:}
密码修改失败请联系微信:mofangbao
回复

使用道具 举报

新浪微博达人勋

发表于 2014-10-15 13:51:54 | 显示全部楼层
感谢分享,支持一下!
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2017-3-17 19:13:32 | 显示全部楼层
这个好像不太容易理解啊楼主!
密码修改失败请联系微信:mofangbao

新浪微博达人勋

发表于 2017-3-25 14:38:29 | 显示全部楼层
{:eb502:}{:eb502:}
密码修改失败请联系微信:mofangbao
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册 新浪微博登陆

本版积分规则

Copyright ©2011-2014 bbs.06climate.com All Rights Reserved.  Powered by Discuz! (京ICP-10201084)

本站信息均由会员发表,不代表气象家园立场,禁止在本站发表与国家法律相抵触言论

快速回复 返回顶部 返回列表