- 积分
- 2127
- 贡献
-
- 精华
- 在线时间
- 小时
- 注册时间
- 2018-9-23
- 最后登录
- 1970-1-1
|
登录后查看更多精彩内容~
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
各位前辈好,我现在用CESM输出结果驱动WRF,模拟黄土高原上一块3度*3度左右的区域。我设置了两层嵌套(1:5,lat-lon投影,最外层dx=dy=0.25度.)。可用平台有: 台式机配置:32G内存、16核 高算平台个人实例:32G内存、16核 高算平台的公共集群:2节点,64核
第一个问题是如何提高运算的速度。首先我由原来的3层嵌套(1:3:3)改成了现在的2层(1:5 这样有用吗?)。 同时采用的并行计算mpirun。 并行计算时核数的确定参考了http://www2.mmm.ucar.edu/wrf/users/FAQ_files/FAQ_wrf_runtime.html,也做了不同的测试,效果不太好(不知道是不是我格点比较少的缘故,用较多的核貌似没用)。
第二个问题是如何提高模拟的精度。我想要得到的变量主要是降雨和气温。我了解到的方法是进行不同的参数化方案组合,目前也在做一下敏感性试验:我模拟7-9月,用8、9的结果与气象站的实测数据比较,几套方案下来效果都不好。 请问参数化方案是这么做吗? 另外我在家园看到下垫面数据也有影响,我的namelist中设置geog_data_res='default','default',是不是有问题的。
以下是我的namelist,请各位帮忙看下有问题没有
namelist.wps
&share
wrf_core = 'ARW',
max_dom =2,
start_date = '2000-07-01_00:00:00','2000-07-01_00:00:00',
end_date = '2000-10-01_00:00:00','2000-07-01_00:00:00',
interval_seconds = 21600
io_form_geogrid = 2,
/
&geogrid
parent_id = 1, 1,
parent_grid_ratio = 1, 5,
i_parent_start = 1, 12,
j_parent_start = 1, 9,
e_we = 36,66,
e_sn = 31,76,
geog_data_res = 'default','default',
dx = 0.25,
dy = 0.25,
map_proj = 'lat-lon', (用lat-lon投影时,积分步长怎么设)
ref_lat = 35.95,
ref_lon = 107.35,
truelat1 = 30.0,
truelat2 = 60.0,
stand_lon = 107.35,
geog_data_path = '/home/xxx/geog/'
/
&ungrib
out_format = 'WPS',
/
&metgrid
fg_name = '/home/xxx/CCSM_CMIP5_MOAR_BC_20THC'
io_form_metgrid = 2,
opt_output_from_metgrid_path='/home/xxx/test'
/
namelis.input
&time_control
run_days = 92,
run_hours = 0,
run_minutes = 0,
run_seconds = 0,
start_year = 2000,2000,
start_month = 07,07,
start_day = 01, 01,
start_hour = 00, 00,
start_minute = 00, 00,
start_second = 00, 00,
end_year = 2000,2000,
end_month = 10,10,
end_day = 01,01,
end_hour = 00,00,
end_minute = 00,00,
end_second = 00,00,
interval_seconds = 21600
input_from_file = .true.,.true.,
history_interval = 1440,60,
frames_per_outfile = 500,20000,
restart = .false.,
restart_interval = 50000,
io_form_history = 2
io_form_restart = 2
io_form_input = 2
io_form_boundary = 2
debug_level = 0
history_outname='/home/xxx/wrfout_d<domain>'
/
&domains
time_step = 150,
time_step_fract_num = 0,
time_step_fract_den = 1,
max_dom = 2,
e_we = 36,66,
e_sn = 31,76,
e_vert = 30,30,
p_top_requested = 10000,
num_metgrid_levels = 27,
num_metgrid_soil_levels = 4,
dx = 27794.3691,5558.87382,
dy = 27794.3691,5558.87382,
grid_id = 1, 2,
parent_id = 1,1,
i_parent_start = 1, 12,
j_parent_start = 1, 9,
parent_grid_ratio = 1, 5,
parent_time_step_ratio = 1,5,
feedback = 1,
smooth_option = 0
/
&physics
mp_physics = 3,3,
ra_lw_physics=1,1,
ra_sw_physics=1,1,
radt = 27,27,
sf_sfclay_physics=1,1,
sf_surface_physics=5,5,
bldt =0,0,
cu_physics=1,1,
cudt = 5,5,
isfflx=1,
ifsnow=1,
icloud = 1,
surface_input_source=1,
num_soil_layers = 4,
sf_urban_physics = 0,0,
/
&fdda
/
&dynamics
w_damping = 0,
diff_opt = 1,1,
km_opt = 4,4,
diff_6th_opt = 0,0,
diff_6th_factor = 0.12,0.12,
base_temp = 290.
damp_opt = 0,
zdamp = 5000.,5000.,
dampcoef = 0.2,
khdif = 0,
kvdif = 0,
non_hydrostatic = .true.,
moist_adv_opt = 1,
scalar_adv_opt = 1,
/
&bdy_control
spec_bdy_width = 5,
spec_zone = 1,
relax_zone = 4,
specified = .true., .false.,
nested = .false., .true.,
/
&grib2
/
&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
/
|
-
研究区
|